Số M được chia thành 3 số tỉ lệ với \(\dfrac{1}{2}\);\(\dfrac{2}{3}\) ;\(\dfrac{3}{4}\) tìm số M biết tổng bình phương của 3 số đó bằng 724
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{2}{3}}=\dfrac{c}{\dfrac{3}{4}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}}=\dfrac{69}{\dfrac{23}{12}}=36\)
Do đó: a=18; b=24; c=27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{2}{3}}=\dfrac{c}{\dfrac{3}{4}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}}=\dfrac{69}{\dfrac{23}{12}}=36\)
Do đó: a=18; b=24; c=27
Gọi ba phần cần tìm lần lượt là a,b,c
Theo đề, ta có: \(\dfrac{1}{5}a=\dfrac{10}{3}b=\dfrac{4}{5}c\)
=>\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}\)
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}=\dfrac{a+b+c}{5+\dfrac{5}{4}+\dfrac{3}{10}}=\dfrac{786}{\dfrac{131}{20}}=120\)
=>a=600; b=150; c=36
Gọi ba phần số M chia ra lần lượt là a,b,c
Ta có : a^b+b^2+c^2 = 4660
a : b : c = 1/2 : 5/3 : 9/4
=> a : 1/2 = b : 5/3 = c : 9/4
=> 2a/1 = 3b/5 = 4c/9
=> 2a/1 x 45 = 3b/5 x45 = 4c/9 x 45
=> 90a = 27b = 20c
*90a=27b => a/27 = b/90 => a/3 = b/10 => a/6 = b/20 [1]
*27b =20c => b/20 = c/27 [2]
Từ [1] , [2] => a/6 =b/20=c/27
Đặt a/6=b/20=c/27=k
=> a=6k , b/20k , c=27k
=> a^2+b^2+c^2=1165.k^2 = 4660 => k^2 = 4 => k = 2 hoặc -2
với k = 2 thì a= 12 , b = 40 , c= -54 => M = 12+40+54=106
với k= 2 thì a= -12, b= -40 , c= -54 => M= -106
Gọi ba phần số M chia ra lần lượt là a,b,c
Ta có : a^b+b^2+c^2 = 4660
a : b : c = 1/2 : 5/3 : 9/4
=> a : 1/2 = b : 5/3 = c : 9/4
=> 2a/1 = 3b/5 = 4c/9
=> 2a/1 x 45 = 3b/5 x45 = 4c/9 x 45
=> 90a = 27b = 20c
*90a=27b => a/27 = b/90 => a/3 = b/10 => a/6 = b/20 [1]
*27b =20c => b/20 = c/27 [2]
Từ [1] , [2] => a/6 =b/20=c/27
Đặt a/6=b/20=c/27=k
=> a=6k , b/20k , c=27k
=> a^2+b^2+c^2=1165.k^2 = 4660 => k^2 = 4 => k = 2 hoặc -2
với k = 2 thì a= 12 , b = 40 , c= -54 => M = 12+40+54=106
với k= 2 thì a= -12, b= -40 , c= -54 => M= -106
Gọi ba số cần tìm là a,b,c
Đặt \(\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=\dfrac{3}{2}k\\c=\dfrac{4}{3}k\end{matrix}\right.\)
Ta có: \(a^2+b^2+c^2=724\)
\(\Leftrightarrow4k^2+\dfrac{9}{4}k^2+\dfrac{16}{9}k^2=724\)
\(\Leftrightarrow k^2=\dfrac{26064}{289}\)
Trường hợp 1: \(k=\dfrac{12\sqrt{181}}{17}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=\dfrac{24\sqrt{181}}{17}\\b=\dfrac{3}{2}k=\dfrac{18\sqrt{181}}{17}\\c=\dfrac{4}{3}k=\dfrac{16\sqrt{181}}{17}\end{matrix}\right.\)
Trường hợp 2: \(k=\dfrac{-12\sqrt{181}}{17}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=\dfrac{-24\sqrt{181}}{17}\\b=\dfrac{3}{2}k=\dfrac{-18\sqrt{181}}{17}\\c=\dfrac{4}{3}k=\dfrac{-16\sqrt{181}}{17}\end{matrix}\right.\)