Rút gọn biểu thức \(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4sin^2x}\) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0< =sin^2x< =1\)
=>\(-2< =sin^2x-2< =-1\)
=>\(sin^2x-2< 0\)
\(0< =cos^2x< =1\)
=>\(-2< =cos^2x-2< =-1\)
\(\Leftrightarrow cos^2x-2< 0\)
\(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4\cdot sin^2x}\)
\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\cdot\left(1-cos^2x\right)}\)
\(=\sqrt{sin^4x-4sin^xx+4}+\sqrt{cos^4x-4\cdot cos^2x+4}\)
\(=\sqrt{\left(sin^2x-2\right)^2}+\sqrt{\left(cos^2x-2\right)^2}\)
\(=\left|sin^2x-2\right|+\left|cos^2x-2\right|\)
\(=2-sin^2x+2-cos^2x\)
\(=4-\left(sin^2x+cos^2x\right)=4-1=3\)
\(\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)
\(=\sqrt{sin^4x-4sin^2x+4}+\sqrt{cos^4x-4cos^2x+4}\)
\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)
\(=2-sin^2x+2-cos^2x\)
\(=4-\left(sin^2x+cos^2x\right)=3\)
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
\(\sqrt{sin^4x+cos^2x}+\sqrt{sin^2x+cos^4x}\)
\(=\sqrt{\left(1-cos^2x\right)^2+cos^2x}+\sqrt{sin^2x+cos^4x}\)
\(=\sqrt{1-cos^2x+cos^4x}+\sqrt{sin^2x+cos^4x}\)
\(=\sqrt{sin^2x+cos^4x}+\sqrt{sin^2x+cos^4x}\)
\(=2\sqrt{sin^2x+cos^4x}\)
\(A=\sqrt{sin^2x\left(sin^2x+cos^2x\right)}=\sqrt{sin^2x}\)
=|sinx|
\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)
\(=\sqrt{4-4sin^2x+sin^4x}+\sqrt{4-4cos^2x+cos^4x}\)
\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)
\(=2-sin^2x+2-cos^2x=4-\left(sin^2x+cos^2x\right)\)
\(=3\)