Cho tam giác ABC. Gọi M N lần lượt là trung điểm của AB, AC. Phân giác trong và ngoài của góc B và tam giác ABC cắt đường thẳng MN lần lượt tại D và E. Các tia AD, AE cắt đường thẳng BC lần lượt tại P và Q. Chứng minh rằng:
a) BD \(\perp AP;BE\perp AQ\)
b) B là trung điểm của PQ
c) AB=DE
tự kẻ hình:3333
a) vì BE là phân giác của QBA=> B1=B2=QBA/2
vì BD là phân giác của ABC=> B3=B4=ABC/2
ta có EBD= B2+B3=QBA/2 +ABC/2= QBA+ABC/2= 180 độ/2=90 độ ( QBA kề bù với ABC)
trong tứ giác AEBD có EBD= 90 độ=> AEBD là HCN=> EBD=BDA=DAE=AEB= 90 độ
=> BEQ= 90 độ ( kề bù với AEB), BDP= 90 độ( kề bù với BDA)
=> BE vuông góc với AQ, BD vuông góc với AP
b)vì AEBD là hcn => AE=BD,
xét tam giác BEQ và tam giác BEA có
B1=B2(gt)
BE chung
BEQ=BEA(=90 độ)
=> tam giác BEQ= tam gáic BEA(gcg)
=> AE=EQ ( hai cạnh tương ứng)
ta có DBP+EBQ= 90 độ( EBD= 90 độ)
VÌ EBQ vuông tại E=> EQB+EBQ= 90 độ
=> DBP=EQB (=90 độ-EBQ)
xét tam giác BEQ và tam giác PDB có
EQ=BD(=AE)
BEQ=PDB(=90 độ)
DBP=EQB(cmt)
=> tam giác BEQ= tam gáic PDB(gcg)
=> QB=PB ( hai cạnh tương ứng)
=> B là trung điểm của PQ
c) xét tam giác AED và tam giác DBA có
AE=BD(cmt)
DAE=BDA(=90 độ)
AD chung
=> tam giác AED= tam giác DBA (cgc)
=> AB=DE( hai cạnh tương ứng)