Cho x+y+z-156=302
Tìm x,y,z biết x,y ,z lần lươtj tỉ lệ với 2;3;5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{y}=-\dfrac{2}{5}\Rightarrow x=-\dfrac{2}{5}y;\dfrac{y}{z}=\dfrac{1}{4}\Rightarrow y=\dfrac{1}{4}z\\ \Rightarrow x=-\dfrac{2}{5}y=-\dfrac{2}{5}\cdot\dfrac{1}{4}z=-\dfrac{1}{10}z\\ z=5\Rightarrow x=-\dfrac{1}{2}\\ z=-\dfrac{1}{5}\Rightarrow x=\dfrac{1}{50}\\ z=30\Rightarrow x=-3\)
Theo đề: \(\left\{{}\begin{matrix}x=-\dfrac{2}{5}y\\y=\dfrac{1}{4}z\end{matrix}\right.\Rightarrow x=-\dfrac{2}{5}y=-\dfrac{2}{5}\cdot\dfrac{1}{4}z=-\dfrac{1}{10}z\)
\(\left\{{}\begin{matrix}z=5\Rightarrow x=-\dfrac{1}{10}\cdot5=-\dfrac{1}{2}\\z=-\dfrac{1}{5}\Rightarrow x=-\dfrac{1}{10}\left(-\dfrac{1}{5}\right)=\dfrac{1}{50}\\z=30\Rightarrow x=-\dfrac{1}{10}\cdot30=-3\end{matrix}\right.\)
x; y ; z lần lượt tỉ lệ với 5 ; 3 ; 2\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y-z}{5+3-2}=\dfrac{36}{6}=6\)
\(\dfrac{x}{5}=6\Rightarrow x=30\\ \dfrac{y}{3}=6\Rightarrow y=18\\ \dfrac{z}{2}=6\Rightarrow z=12\)
Vậy ...
x = -7/y ; y= 156.z
Thay y = 156.z vào công thức x = -7/y, ta có :
x = -7/(156.z)
thay z = 457, ta được :
x = -7/(156.457)
x = -7/71292
a, Ta có : 3x = 5y => \(\dfrac{x}{5}=\dfrac{y}{3}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\Rightarrow x=25;y=15\)
b, Ta có : \(6x=10y=15z\Rightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{5+3+2}=\dfrac{90}{10}=9\Rightarrow x=45;y=27;z=18\)
c, tương tự b
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{40}{8}=5\)
Do đó: x=15; y=25
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y+z}{\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{3}}=270\)
Do đó: x=45; y=27; z=18
a,
Vì x và y tỉ lệ nghịch nên ta có:
\(x=\frac{a}{y}\)
y và z cũng tỉ lệ nghịch nên ta có:
\(y=\frac{b}{z}\)
Do đó: \(x=\frac{a}{\frac{b}{z}}=>x=\frac{az}{b}=>x=\frac{a}{b}z\)
Vậy x và z là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ \(\frac{a}{b}\)
b,
Vì x và y tỉ lệ nghịch nên ta có:
\(x=\frac{a}{y}\)
z và y tỉ lệ thuận nên ta có:
\(y=bz\)
Do đó: \(x=\frac{a}{bz}=>xbz=a=>xz=\frac{a}{b}\)
Vậy x và z là hai đại lượng tỉ lệ nghịch theo hệ số tỉ lệ \(\frac{a}{b}\)
a: x=2y
nên y=2/x
yz=-3
\(\Leftrightarrow z\cdot\dfrac{2}{x}=-3\)
\(\Leftrightarrow2z=-3x\)
=>x+y+z=302+156=458
áp dung... ta có:
x/2=y/3=z/5=x+y+z/2+3+5=458/10=45,8
đề hơi kì