K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

undefined

23 tháng 3 2021

a)\(A=1+x+x^2+x^3+..........+x^{2012}\)

+)Thay x=1 vào biểu thức đc:

\(A=1+1+1^2+1^3+..............+1^{2012}\)

               Có 2013 số hạng

\(\Rightarrow A=1.2013=2013\)

b)\(B=1-x+x^2-x^3+..............-x^{2011}\)

\(\Rightarrow B=\left(1-x\right)+\left(x^2-x^3\right)+............+\left(x^{2010}-x^{2011}\right)\)

+)Thay x=1 vào biểu thức được:

\(B=\left(1-1\right)+\left(1^2-1^3\right)+...........+\left(1^{2010}-1^{2011}\right)\)

\(\Rightarrow B=0+0+......................+0=0\)

+)\(C=A+B\Rightarrow C=2013+0\Rightarrow C=2013\)

Vậy C=2013

Chúc bn học tốt

23 tháng 3 2022

f(-1)= 1+(-1)+(-1)2+...+(-1)100

=1+(-1)+1+...+1

=1+0

=1

A(x)=F(x)-G(x)

=1+x+x^2+...+x^100-x^2-x^4-...-x^100

=1+x+x^3+...+x^99

Số số lẻ từ 1 đến 99 là (99-1):2+1=50(số)

A(-1)=1+(-1)+(-1)^3+...+(-1)^99

=1-50*1=1-50=-49

10 tháng 1 2017

Thay x = -1 và đa thức, ta có:

(-1)2 + (-1)4 + (-1)6 + … + (-1)100 = Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Vậy giá trị đa thức bằng 50 tại x = -1.

5 tháng 9 2019

Tại x = -1 , thay vào đa thức ta được

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án D

a. Thay x = 1 vào đa thức ta có: 

\(1^2-4.1+4=1\)

Thay x = 2 vào đa thức ta có

\(2^2-4.2+4=0\)

Thay x = 3 vào đa thức ta có: 

\(3^2-4.3+4=1\)

Thay x = -1 vào đa thức ta có: 

\(\left(-1\right)^2-4.\left(-1\right)+4=9\)

b. Trong các số trên 2 là nghiệm của đa thức M(x)

7 tháng 5 2023

a, M(\(x\)) = \(x^2\) - 4\(x\) + 4 

M(1) = 12 - 4.1 + 4 = 1

M(2) = 22 - 4.2 + 4 = 0

M(3) = 32 - 4.3 + 4 = 1

M(-1) = (-1)2 - 4.(-1) + 4 = 9

b, Trong các số 1; 2; 3 và -1  thì 2 là nghiệm của M(\(x\)) vì M(2) = 0

27 tháng 10 2023

a,

\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)

Thay $x=\dfrac12$ vào $A$, ta được:

\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)

Vậy $A=\dfrac94$ khi $x=\dfrac12$.

b,

\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)

Thay $x=1$ vào $B$, ta được:

\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)

Vậy $B=0$ khi $x=1$.

$Toru$