K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Tương tự HS tự làm

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

26 tháng 4 2022

a/

Xét tg vuông ABC và tg vuông HBA có \(\widehat{ACB}=\widehat{HAB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABC đồng dạng với tg HBA (g.g.g)

b/

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=5\sqrt{5}\) (Pitago)

\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông băng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{81}{5\sqrt{5}}=\dfrac{81\sqrt{5}}{25}\)

\(\Rightarrow CH=BC-BH=5\sqrt{5}-\dfrac{81\sqrt{5}}{25}=\dfrac{44\sqrt{5}}{25}\)

Ta có

\(AH^2=BH.CH\) (trong tg vuông bình phường đường cao thuộc cạnh huyền băng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH^2=\dfrac{81\sqrt{5}}{25}.\dfrac{44\sqrt{5}}{25}\) Khai căn ra AH

c/

Xét tg vuông BHI và tg vuông BEC có \(\widehat{CBE}\) chung

=> tg BHI đồng dạng với tg BEC (g.g.g)

\(\Rightarrow\dfrac{BI}{BC}=\dfrac{BH}{BE}\Rightarrow BI.BE=BH.BC\left(dpcm\right)\)

 

18 tháng 3 2016

BT 1:

a/ Xét tg ABE và tg ACF có

^BAE=^CAF (AD là phân giác ^BAC)

^AEB=^AFC=90

=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)

b/ Xét tg BDE và tg CDF có

^BDE=^CDF (góc đối đỉnh)

^BED=^CFD=90

=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)

Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)

BT 2:

a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)

cm tương tự cũng có AI//KH (cùng vg với AC)

=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)

^BAC=90

=> AIHK là hcn

b/

+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)

+ Xét 2 tg vuông IAK và tg vuông HKA có

IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)

=> ^AIK=^AHK (2)

Từ (1) và (2) => ^AIK=^ACB

2 tháng 4 2017

Còn câu c sao ạ