Cho hình thang ABCD (AB//CD), biết \(\widehat{ADB}=45^o\), AB = 4 cm, BD = 6cm, CD = 9 cm
a) Chứng minh: \(\Delta ABD\) đồng dạng với \(\Delta BDC\)
b) Tính \(\widehat{B}\) của hình thang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có AB/BD=4/6=2/3
BD/CD=6/9=2/3
suy ra AB/BD=BD/CD
Xét tam giác ABD và tam giác BDC có
góc ABD= góc BDC(so le trong, AB song song với CD)
AB/BD=BD/CD(cmt)
suy ra tam giác ABD đồng dạng với tam giác BDC(c.g.c)
b tam giác ABD đồng dạng với tam giác BDC suy ra góc ADB= góc BCD=45 độ
ta có góc BCD+ góc B=180 đọ
45+B=180
góc B=135 độ(đpcm)
a) Xét 2 tam giác ADB và BCD có:
góc DAB = góc DBC (gt)
góc ABD = góc BDC ( so le trong )
nên tam giác ADB đồng dạng với tam giác BDC.(1)
b) Từ (1) ta được AB/BC = DB/CD = AB/BD
hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5
==> BC= 3,5*5/2,5 = 7 (cm)
ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5
==> CD = 5*5/2,5 =10 (cm)
c) Từ (1) ta được;
AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .
ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2
mà tỉ số diện tích bằng bình phương tỉ số động dạng
do đó S ADB/ S BCD = (1/2)^2 = 1/4
a) Ta có:
\(\frac{AB}{BD}=\frac{4}{6}=\frac{2}{3}\); \(\frac{BD}{DC}=\frac{6}{9}=\frac{2}{3}\).
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}=\frac{2}{3}\).
Xét \(\Delta ABD\)và \(\Delta BDC\)có:
\(\widehat{ABD}=\widehat{BDC}\)(vì \(AB//CD\)).
\(\frac{AB}{BD}=\frac{BD}{DC}\)(chứng minh trên).
\(\Rightarrow\Delta ABD~\Delta BDC\left(c.g.c\right)\)(điều phải chứng minh).