K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

a, xét tam giác ABH và tam giác DBH có : BH chung

góc AHB = góc DHB = 90 

AH = HD (gt)

=> tam giác AHB = tam giác DBH (2cgv)

16 tháng 5 2019

a) Xét  \(\Delta ABH\)và \(\Delta DBH\)

ta có AH = DH (gt)

\(\widehat{AHB}=\widehat{DHB}=\left(90^0\right)\)

BH chung

nên \(\Delta ABH=\Delta DBH\left(c-g-c\right)\)

b) Dễ chứng minh \(\Delta AHC=\Delta DHC\left(c-g-c\right)\)

\(\Rightarrow\widehat{ACH}=\widehat{DCH}\)

do đó CH là tpg của \(\widehat{ACD}\)

c) Dễ chứng minh \(\Delta BHD=\Delta EHA\left(g-c-g\right)\)

\(\Rightarrow BH=HE\)

Xét \(\Delta ABH\)và \(\Delta DEH\)

ta có BH = HE (cmt)

\(\widehat{AHB}=\widehat{DHE}\left(=90^0\right)\)

AH = DH (gt)

nên \(\Delta ABH=\Delta DEH\left(c-g-c\right)\)

suy ra \(\widehat{ABH}=\widehat{EDH}\)

mà hai góc này ở vị trí so le trong 

do đó AB // DE

a)

Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔABH vuông tại H và ΔDCH vuông tại D có 

AH=DH(gt)

BH=CH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(Hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AC=DC(đpcm)

b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có 

EH chung

AH=DH(gt)

Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)

Suy ra: AE=DE(Hai cạnh tương ứng)

Xét ΔACE và ΔDCE có 

CA=CD(cmt)

CE chung

AE=DE(cmt)

Do đó: ΔACE=ΔDCE(c-c-c)

13 tháng 4 2018

ai trl trc thì mk cho hen!!!

13 tháng 4 2018

a, Xét hai tam giác ABH và tam giác ADH có

BH=HD(giả thiết)

góc BHA=góc DHA(=90 độ)

AH chung

Suy ra ABH=ADH(dpcm)

b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^

25 tháng 3 2022

GTvà KL bạn tự ghi nha:

a)Xét ΔABH và ΔDBH, có:

Góc BHA=góc BHD=90 độ

BH là cạnh chung

AH=DH(gt)

=>ΔABH=ΔDBH (c.g.c)

b)Ta có:

góc ABH=gócHBD( vì ΔABH=ΔDBH)

Do đó BC là tia phân giác của góc ACD

 

29 tháng 12 2021

a: Xét ΔCAH vuông tại H và ΔCDH vuông tại H có

HA=HD

CH chung

Do đó: ΔCAH=ΔCDH