\(A=\frac{sin2x+c\text{os}3x+sin6x+c\text{os}7x}{sin3x-s\text{inx}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\int\frac{tan^3x}{cos2x}dx=\int\frac{sin^3x}{cos^3x\cdot\left(2cos^2x-1\right)}dx=\int\frac{1-cos^2x}{cos^3x\left(2cos^2x-1\right)}\cdot sinx\cdot dx\\ =\int\frac{1-cos^2x}{cos^3x\left(2cos^2x-1\right)}d\left(cosx\right)=...\)
\(\frac{1+cosx-sinx}{1-cosx-sinx}=\frac{1+2cos^2\frac{x}{2}-1-2sin\frac{x}{2}.cos\frac{x}{2}}{1-1+2sin^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}{2sin^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}\)
\(=\frac{-2cos\frac{x}{2}\left(sin\frac{x}{2}-cos\frac{x}{2}\right)}{2sin\frac{x}{2}\left(sin\frac{x}{2}-cos\frac{x}{2}\right)}=\frac{-cos\frac{x}{2}}{sin\frac{x}{2}}=-cot\frac{x}{2}\)
1)
\(I=\int\left(cos^2x-cos^2x\cdot sin^3x\right)dx\\ =\int cos^2x\cdot dx-\int cos^2x\cdot sin^3x\cdot dx\\ =\frac{1}{2}\int\left(cos2x+1\right)dx+\int cos^2x\left(1-cos^2x\right)d\left(cosx\right)\\ =\frac{1}{4}sin2x+\frac{1}{2}+\frac{cos^3x}{3}-\frac{cos^5x}{5}+C\)
....
2) Xét riêng mẫu số:
\(sin2x+2\left(1+sinx+cosx\right)\\ =\left(sin2x+1\right)+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx\right)^2+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx+1\right)^2\\ =\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2\)
Khi đó:
\(I_2=\int\frac{sin\left(x-\frac{\pi}{4}\right)}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}dx\\ =-\frac{1}{\sqrt{2}}\int\frac{d\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}\\ =\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1}+C=\frac{1}{2cos\left(x-\frac{\pi}{4}\right)+1}\)
...
4.
\(\left\{{}\begin{matrix}cos^22x\ge0\\cos^23x\ge0\\cos^24x\ge0\end{matrix}\right.\) với mọi x
\(\Rightarrow cos^22x+cos^23x+cos^24x\ge0\) với mọi x
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}cos2x=0\\cos3x=0\\cos4x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cos2x=0\\cos3x=0\\2cos^22x-1=0\end{matrix}\right.\)
Nếu \(cos2x=0\Rightarrow2cos^22x-1=-1\ne0\)
\(\Rightarrow\) Pt đã cho vô nghiệm
3.
Ta có: \(\left\{{}\begin{matrix}cos^2x\ge0\\cos^22x\ge0\\cos^23x\ge0\end{matrix}\right.\) với mọi x
\(\Rightarrow cos^2x+cos^22x+cos^23x\ge0\) với mọi x
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}cosx=0\\cos2x=0\\cos3x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\2cos^2x-1=0\\cos3x=0\end{matrix}\right.\)
Pt vô nghiệm (do nghiệm của pt thứ nhất ko thể là nghiệm của pt thứ 2)
\(A=\frac{sin2x+sin6x+cos7x+cos3x}{sin3x-sinx}=\frac{2sin4x.cos2x+2cos5x.cos2x}{2cos2x.sinx}=\frac{2cos2x\left(sin4x+cos5x\right)}{2cos2x.sinx}\)
\(=\frac{sin4x+cos5x}{sinx}\)