chứng minh biểu thức sau đây không phụ thuộc vào y:
A= \(\frac{1}{sin2y}+\frac{1}{sin4y}+\frac{1}{sin8y}-coty+cot8y\)
B= \(\frac{1}{sin4x}+\frac{1}{sin8x}+\frac{1}{sin16x}-cot2x+cot16x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{x}{2}-\frac{2x^3}{2}-\frac{3x}{6}+\frac{6x^3}{6}-\frac{3}{2}\)
\(=\frac{x}{2}-x^3-\frac{x}{2}+x^3-\frac{3}{2}=\frac{3}{2}\)
Vậy giá trị biểu thức không phụ thuộc vào giá trị biến x
\(\frac{1}{sin2a}=\frac{sina}{sina.sin2a}=\frac{sin\left(2a-a\right)}{sina.sin2a}=\frac{sin2a.cosa-cos2a.sina}{sina.sin2a}\)
\(=\frac{sin2a.cosa}{sina.sin2a}-\frac{cos2a.sina}{sina.cos2a}=\frac{cosa}{sina}-\frac{cos2a}{sin2a}=cota-cot2a\)
Áp dụng vào bài toán:
\(A=\frac{1}{sin2y}+\frac{1}{sin2\left(2y\right)}+\frac{1}{sin2\left(4y\right)}-coty+cot8y\)
\(=coty-cot2y+cot2y-cot4y+cot4y-cot8y-coty+cot8y\)
\(=0\)
\(B=\frac{1}{sin2\left(2x\right)}+\frac{1}{sin2\left(2x\right)}+\frac{1}{sin2\left(8x\right)}-cot2x+cot16x\)
\(=cot2x-cot4x+cot4x-cot8x+cot8x-cot16x-cot2x+cot16x\)
\(=0\)