K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2020

a= 82

b2 = 172

c2 = 52

d= 32

e2 = 82

*Ý kiến riêng mong đc k

*Nếu bạn nghĩ mik làm sai thì bạn có thể tính lại

100% đúng nha bạn

Mik đã đi hỏi cô và cô bảo đúng :)

10 tháng 7 2020

cho mình hỏi tại sao lại như thế và dựa vào căn cứ gì mà bạn viết như vậy

7 tháng 4 2017

Giả sử a,b,c,d khác nhau ta có

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\) 

\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(< 1-\frac{1}{5}< 1\)(trái với giả thiết)

=> điều giả sử là sai => ĐPCM

7 tháng 4 2017

Giả sử a,b,c,d khác nhau, thì ta sẽ có:

 \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)

\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(< 1-\frac{1}{5}< 1\) (trái với giả thiết)

= > điều giả sử sai = > ĐPCM

19 tháng 6 2019

a) Giả sử không có 2 số nào bằng nhau trong các số nguyên dương đẫ cho.

Không mất tính tổng quát ta giả sử: \(a1< a2< a3< a4< ...< a100\)

Nên : \(a1\ge1;a2\ge2;a3\ge3;...;a100\ge100\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

Mặt khác, ta có : \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< \frac{1}{1}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+99.\frac{1}{2}=\frac{101}{2}\)

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)có 99 phân số 1/2 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{101}{2}\)trái với đề bài ra là \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\ge\frac{101}{2}\)

Vậy tồn tại trong 100 số đã cho ít nhất 2 số bằng nhau ( điều phải chứng minh ).

b) Giả sử trong 100 số trên chỉ tồn tại 2 số bằng nhau ( đã chứng minh 2 số bằng nhau ở phần a)

Không mất tính tổng quát, ta giả sử: 

19 tháng 6 2019

b) Làm tiếp : Giả sử a1=a2.

Nên : \(a1=a2>a3>a4>...>a100\)( áp dụng theo phần a)

\(\Rightarrow a1=a2\ge1;a3\ge2;a4\ge3;...;a100\ge99\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{2}{a1}+\frac{1}{a3}+...+\frac{1}{a100}=\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}\)

Mặt khác, ta có :\(\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}< 2+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}=\frac{5}{2}+\frac{97}{3}=\frac{209}{6}\)

\(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}< \frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)có 97 phân số 1/3 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{209}{6}< \frac{303}{6}=\frac{101}{2}\)trái với đề bài

Tương tự giả sử lấy bất kỳ 2 số bằng nhau khác tổng \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\)vẫn nhỏ hơn 101/2

Vậy tồn tại trong 100 số đã cho có ít nhất 3 số bằng nhau ( điều phải chứng minh).

9 tháng 2 2019

Áp dụng ta đc:

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5a+5b+5c}{a+b+c}=5\left(\text{vì: a,b,c khác 0}\right)\)

\(\Rightarrow\hept{\begin{cases}b+c=2a\\c+a=2b\\a+b=2c\end{cases}}\Rightarrow a=b=c\)

\(\Rightarrow P=6\)

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)

\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Xét \(a+b+c\ne0\)

\(\Rightarrow a=b=c\)

Thay vào P ta được P=6

Xét \(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)

Thay vào P ta được P= -3

Vậy P có 2 gtri là ...........

10 tháng 8 2018

Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau

Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)

\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)

Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết

Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100

12 tháng 6 2021

Ta có :

\(1=1\)

\(\frac{1}{2^2}< \frac{1}{1\times2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)

........................................................

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

Cộng tất cả lại ta có :

\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}=2-\frac{1}{n}\)với \(\forall n\)

Nếu chọn ra 5 số a,b,c,d,e khác nhau bất kỳ  trong các số từ 1 đến n thì 

\(\Rightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{e^2}< 2\)

Mà theo giả thiết :

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{e^2}=2\)

⇒ có ít nhất 2 trong 5 số a;b;c;d;e bằng nhau

12 tháng 6 2021

giúp mình câu này với!!!