K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 6 2020

Theo Viet: \(\left\{{}\begin{matrix}tana+tanb=p\\tana.tanb=q\end{matrix}\right.\)

\(\Rightarrow tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{p}{1-q}\)

\(\Rightarrow A=cos^2\left(a+b\right)+psin\left(a+b\right)+q.sin^2\left(a+b\right)\)

\(=\frac{1}{cos^2\left(a+b\right)}\left(1+p.\frac{sin\left(a+b\right)}{cos\left(a+b\right)}+q.\frac{sin^2\left(a+b\right)}{cos^2\left(a+b\right)}\right)\)

\(=\left[1+tan^2\left(a+b\right)\right]\left[1+p.tan\left(a+b\right)+q.tan^2\left(a+b\right)\right]\)

\(=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]\left[1+\frac{p^2}{1-q}+\frac{p^2q}{\left(1-q\right)^2}\right]\)

\(=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]\left[1+\frac{p^2}{\left(1-q\right)^2}\right]=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]^2\)

1 tháng 6 2021

2.

ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)

\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)

\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))

Nếu \(y=1\), khi đó:

\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)

Phương trình này vô nghiệm

Nếu \(y=2x-1\), khi đó:

\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))

\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)

Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)

Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\)\(2x>0\)

\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)

Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)

Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.

Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)

10 tháng 5 2017

a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).

10 tháng 5 2017

b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .

NV
13 tháng 4 2019

\(K=\frac{2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a+b}{2}\right)+2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)}{2cos^2\left(\frac{a+b}{2}\right)-1+2cos\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)+1}\)

\(K=\frac{sin\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}{cos\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}\)

\(K=\frac{sin\left(\frac{a+b}{2}\right)}{cos\left(\frac{a+b}{2}\right)}=tan\left(\frac{a+b}{2}\right)\)

NV
29 tháng 5 2020

\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)

\(=2+2\left(cosa.cosb+sina.sinb\right)\)

\(=2+2.cos\left(a-b\right)=2+2.cos\frac{\pi}{3}=3\)

\(B=cos^2a+sin^2b+2cosa.sinb+cos^2b+sin^2a-2sina.cosb\)

\(=2-2\left(sina.cosb-cosa.sinb\right)\)

\(=2-2sin\left(a-b\right)=2-2sin\frac{\pi}{3}=2-\sqrt{3}\)

NV
16 tháng 5 2019

Theo Viet ta có \(\left\{{}\begin{matrix}tana+tanb=p\\tana.tanb=q\end{matrix}\right.\)

\(\Rightarrow tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{p}{1-q}\)

\(A=cos^2\left(a+b\right)\left[1+p.tan\left(a+b\right)+q.tan^2\left(a+b\right)\right]\)

\(A=\frac{1}{1+tan^2\left(a+b\right)}\left[1+\frac{p^2}{1-q}+\frac{q.p^2}{\left(1-q\right)^2}\right]\)

\(A=\frac{\left(1-q\right)^2}{p^2+\left(1-q\right)^2}\left(1+\frac{p^2}{\left(1-q^2\right)}\right)\)

\(A=\frac{\left(1-q^2\right)}{p^2+\left(1-q\right)^2}.\left(\frac{p^2+\left(1-q\right)^2}{\left(1-q\right)^2}\right)=1\)