Tìm tất cả các đa thức f(x) có các hệ số nguyên thỏa mãn điều kiện:
(x+1)*f(x)=(x-2)*f(x+2) và f(0)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)
\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)
\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)
\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)
Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:
Diễn đàn Toán học
Diễn Đàn MathScope
.......
Bài 1.
+TH1: Đa thức có bậc là 0
\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)
Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)
Vậy \(f\left(x\right)=0\forall x\in R\)
+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.
Giả sử đa thức có bậc n.
Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)
Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)
Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.
Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.