Giải phương trình:
2/x2 -2015x+2014 = 1/x2 -2016x+2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2014};-\dfrac{2}{2015};-\dfrac{3}{2016};-\dfrac{4}{2017}\right\}\)
Ta có: \(\dfrac{1}{2014x+1}-\dfrac{1}{2015x+2}=\dfrac{1}{2016x+3}-\dfrac{1}{2017x+4}\)
\(\Leftrightarrow\dfrac{2015x+2-2014x-1}{\left(2014x+1\right)\left(2015x+2\right)}=\dfrac{2017x+4-2016x-3}{\left(2016x+3\right)\left(2017x+4\right)}\)
\(\Leftrightarrow\dfrac{x+1}{\left(2014x+1\right)\left(2015x+2\right)}-\dfrac{x+1}{\left(2016x+3\right)\left(2017x+4\right)}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2014x+1\right)\left(2015x+2\right)}-\dfrac{1}{\left(2016x+3\right)\left(2017x+4\right)}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2014x+1\right)\left(2015x+2\right)}=\dfrac{1}{\left(2016x+3\right)\left(2017x+4\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4058210x^2+6043x+2=4066272x^2+14115x+12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8062x^2+8072x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\8062x^2+8062x+10x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8062x\left(x+1\right)+10\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(x+1\right)\left(8062x+10\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+1=0\\8062x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-1\\8062x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\x=\dfrac{-5}{4031}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{-5}{4031}\right\}\)
\(2015\sqrt{2015x-2014}+\sqrt{2016x-2015}=2016\)
ĐK:\(x\ge\frac{2015}{2016}\)
\(\Leftrightarrow2015\left(\sqrt{2015x-2014}-1\right)+\sqrt{2016x-2015}-1=0\)
\(\Leftrightarrow2015\frac{2015x-2014-1}{\sqrt{2015x-2014}+1}+\frac{2016x-2015-1}{\sqrt{2016x-2015}+1}=0\)
\(\Leftrightarrow2015\frac{2015x-2015}{\sqrt{2015x-2014}+1}+\frac{2016x-2016}{\sqrt{2016x-2015}+1}=0\)
\(\Leftrightarrow2015\frac{2015\left(x-1\right)}{\sqrt{2015x-2014}+1}+\frac{2016\left(x-1\right)}{\sqrt{2016x-2015}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}\right)=0\)
Dễ thấy: \(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}>0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(2015\sqrt{2015x-2014} + \sqrt{2016x-2015} = 2016\)
\(pt\Leftrightarrow 2015\sqrt{2015x-2014}-2015+\sqrt{2016x-2015}-1=0\)
\(\Leftrightarrow 2015(\sqrt{2015x-2014}-1)+(\sqrt{2016x-2015}-1)=0\)
\(\Leftrightarrow \frac{2015^2(x-1)}{\sqrt{2015x-2014}+1}+\frac{2016(x-1)}{\sqrt{2016-2015}+1}=0\)
\(\Leftrightarrow (x-1)(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1})=0\)
Dễ thấy: \(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}=0\) vô nghiệm nên
\(x-1=0\Rightarrow x=1\)
Câu 3:
$\Delta=2015^2-4.2013.2=2011^2$
Do đó pt có 2 nghiệm:
$x_1=\frac{2015+2011}{2.2013}=1$
$x_2=\frac{2015-2011}{2.2013}=\frac{2}{2013}$
Đáp án B.
Câu 4:
Theo định lý Viet, tổng các nghiệm của pt là:
$S=\frac{-b}{a}=\frac{-3}{1}=-3$
Đáp án B.
Nhận xét: Tổng các hệ số của phương trình bằng 0 => phương trình có 1 nghiệm là 1
=> vế trái có nhân tử (x - 1)
pt <=> (x4 - 1 ) + (2015x3 - 2015x2) - (2015x - 2015) = 0
<=> (x-1)(x+1).(x2 + 1) + 2015x2(x - 1) - 2015.(x - 1) = 0
<=> (x - 1).[(x+1).(x2 + 1) + 2015x2 - 2015] = 0
<=> (x -1). [(x+1).(x2 + 1) + 2015(x2 - 1)] = 0
<=> (x -1). [(x+1).(x2 + 1) + 2015(x - 1)(x+1)] = 0
<=> (x -1).(x+1).(x2 + 1 + 2015x - 2015 ) = 0
<=> x - 1 = 0 hoặc x+ 1 = 0 hoặc x2 + 1 + 2015x - 2015 = 0
+) x - 1 = 0 <=> x = 1
+) x + 1 = 0 <=> x = -1
+) x2 + 1 + 2015x - 2015 = 0 <=> x2 + 2015x - 2014 = 0
<=> x2 +2.x. \(\frac{2015}{2}\) + \(\left(\frac{2015}{2}\right)^2\) - \(\left(\frac{2015}{2}\right)^2\) - 2015 = 0
<=> \(\left(x-\frac{2015}{2}\right)^2=\frac{2015^2+4030}{2}\)
<=> \(x-\frac{2015}{2}=\sqrt{\frac{2015^2+4030}{2}}\) hoặc \(x-\frac{2015}{2}=-\sqrt{\frac{2015^2+4030}{2}}\)
<=> \(x=\frac{2015}{2}+\sqrt{\frac{2015^2+4030}{2}}\)hoặc \(x=\frac{2015}{2}-\sqrt{\frac{2015^2+4030}{2}}\)
Vậy pt có 4 nghiệm...
chính xác nè bạn nhớ sai ruj:
x4+2015x2+2014x+2015=0
<=>x4-x+2015x2+2015x+2015=0
<=>x(x3-1)+2015(x2+x+1)=0
<=>x(x-1)(x2+x+1)+2015(x2+x+1)=0
<=>(x2+x+1)[x(x-1)-2015]=0
<=>(x2+x+1)(x2-x-2015)=0
<=>x2+x+1=0 hoặc x2-x-2015=0
*x2+\(2x.\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=0
<=>(x+1/2)2+3/4=0(vô lí)
*x2-\(2x.\frac{1}{2}+\frac{1}{4}-\frac{8061}{4}\)
<=>(x-1/2)2-8061/4=0
<=>(x-1/2)2 =8061/4
<=>x-1/2 =\(\sqrt{\frac{8061}{4}}\)
<=>x =\(\sqrt{\frac{8061}{4}+}\frac{1}{2}\)
\(a,m=3=>x^2+3x-2=0\)
\(\Delta=3^2-4\left(-2\right)=17>0\)
pt có 2 nghiệm pb \(\left[{}\begin{matrix}x1=\dfrac{-3+\sqrt{17}}{2}\\x2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
b,\(\Delta=m^2-4\left(-2\right)=m^2+8>0\)
=> pt đã cho luôn có 2 nghiệm phân biệt x1,x2 với mọi m
theo vi ét \(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=-2\end{matrix}\right.\)
có \(x1^2x2+x2^2x1=2014< =>x1x2\left(x1+x2\right)=2014\)
\(< =>-2\left(-m\right)=2014< =>m=1007\)
a) Thay m=3 vào phương trình, ta được:
\(x^2+3x-2=0\)
\(\Delta=3^2-4\cdot1\cdot\left(-2\right)=9+8=17\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)
\(\frac{2}{x^2-2015x+2014}=\frac{1}{x^2-2016x+2015}\)
\(\Leftrightarrow\frac{2}{\left(x-1\right)\left(x-2014\right)}=\frac{1}{\left(x-1\right)\left(x-2015\right)}\)
\(\Leftrightarrow\frac{2}{x-2014}=\frac{1}{x-2015}\)
áp dụng tính chất tỉ lệ thức ta có:
\(\frac{2}{x-2014-2}=\frac{1}{x-2015-1}\)
\(\Leftrightarrow\frac{2}{x-2016}-\frac{1}{x-2016}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(2-1\right)=0\)
\(\Leftrightarrow x-2016=0\)
\(\Leftrightarrow x=2016\)