GIÚP EM CÂU C) THÔI Ạ :)))
Cho nửa đường tròn tâm O, đường kính AB = 2R và M là điểm thuộc nửa đường tròn đó (M khác A và B). Gọi P là điêm năm trên doạn AO (P khác A và O), d và d' là hai dường thăng vuông góc với AB tương ứng tại A và B. Đường thăng vuông góc với PM tại M cắt d ở E, đường thăng vuông góc với PE tại P cắt d' ở F. AM cắt PE ở C, BM cắt PF ở D. a. Chứng minh tứ giác CMDP nội tiếp và CDP = AEP b. Chứng minh CD song song với AB và ba diểm E, M, F thẳng hàng;. c. Tìm vị trí của M để 1/MA+1/MB đạt giá trị nhỏ nhất
a) Gọi I là điểm chính giữa cung AB => IA = IB
Trên tia đối tia IB và tia MB lấy điểm Q và N sao cho: QI = IB và NM = MA
Ta có: \(\Delta\)AMN vuông cân tại M
=> ^ANB = ^ANM = 45 độ (1)
\(\Delta\)ABQ có AI = IB = IQ
=> \(\Delta\)ABQ vuông cân tại A
=> ^AQB = 45 độ (2)
Từ (1); (2) => ^AQB = ^ANB
=> ANQB nội tiếp
=> ^QNB = ^QAB = 90 độ
=> \(\Delta\)BNQ vuông cân tại N
=> \(MA+MB=MN+MB=NB\le BQ=IB+IQ=IB+IA\)không đổi
=> \(\frac{1}{MA}+\frac{1}{MB}\ge\frac{4}{MA+MB}\ge\frac{4}{IA+IB}\)
Dấu "=" xảy ra <=> MA = MB; MA + MB = IA + IB mà IA = IB => M trùng I hay M nằm giữa cung AB