K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2020

a) Gọi I là điểm chính giữa cung AB => IA = IB 

Trên tia đối tia IB và tia MB lấy điểm Q  và N sao cho: QI = IB và NM = MA 

Ta có: \(\Delta\)AMN vuông cân tại M

=> ^ANB = ^ANM = 45 độ  (1) 

\(\Delta\)ABQ  có AI = IB = IQ

=> \(\Delta\)ABQ vuông cân tại A 

=> ^AQB = 45 độ  (2) 

Từ (1); (2) => ^AQB = ^ANB 

=> ANQB nội tiếp

=> ^QNB = ^QAB = 90 độ 

=> \(\Delta\)BNQ vuông cân tại N 

=> \(MA+MB=MN+MB=NB\le BQ=IB+IQ=IB+IA\)không đổi

=> \(\frac{1}{MA}+\frac{1}{MB}\ge\frac{4}{MA+MB}\ge\frac{4}{IA+IB}\)

Dấu "=" xảy ra <=> MA = MB; MA + MB = IA + IB mà IA = IB => M trùng I hay M nằm giữa cung AB

5 tháng 6 2021

a) Ta có: \(\angle OAC+\angle ODC=90+90=180\Rightarrow OACD\) nội tiếp

b) Xét \(\Delta CDE\) và \(\Delta CBD:\) Ta có: \(\left\{{}\begin{matrix}\angle CDE=\angle CBD\\\angle BCDchung\end{matrix}\right.\)

\(\Rightarrow\Delta CDE\sim\Delta CBD\left(g-g\right)\Rightarrow\dfrac{CD}{CB}=\dfrac{CE}{CD}\Rightarrow CD^2=CB.CE\)

c) BC cắt DF tại G.BD cắt AC tại H

Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\Delta ADH\) vuông tại D

có \(CA=CD\) (CA,CD là tiếp tuyến) \(\Rightarrow\) C là trung điểm AH

Vì \(DF\parallel AH\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{GF}{AC}=\dfrac{BG}{BC}\\\dfrac{GD}{CH}=\dfrac{BG}{BC}\end{matrix}\right.\Rightarrow\dfrac{GF}{AC}=\dfrac{GD}{CH}\)

mà \(CA=CH\Rightarrow GF=GD\Rightarrow\) đpcmundefined

19 tháng 3 2022

19 tháng 3 2022

bài của bn tht hã 

14 tháng 7 2019

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Bạn có thể tham khảo bài tương tự ở đây:

BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn (... - Hoc24

 CM góc COD = 90 độ 

Theo tính chất 2 tiếp tuyến cắt nhau 

Ta có : OC là phân giác góc AOM

=> góc COM = 1/2 góc AOM 

OD là phân giác góc BOM 

=> góc DOM = 1/2 góc BOM

=> góc COD = góc COM + góc DOM = 1/2 ( góc AOM + góc BOM ) = 1/2 góc AOB = 1/2 x 180 độ = 90 độ

4 tháng 2 2022

a, Xét (O) có : 

^AMB = 900 ( góc nt chắn nửa đường tròn ) 

=> ^DMA = 900

Xét tứ giác ACMD có : 

^ACD = ^DMA = 900

mà 2 góc này kề nhau, cùng nhìn cạnh AD 

Vậy tứ giác ACMD là tứ giác nt 1 đường tròn 

b, Vì tứ giác ACMD là tứ giác nt 1 đường tròn 

=> ^HNM = ^HDM ( góc nt cùng chắn cung HM ) (1) 

^BNM = ^MAB ( góc nt cùng chắn cung BM ) (2) 

Từ (1) ; (2) => ^HDM = ^MAB 

Xét tam giác CAH và tam giác CDB có : 

^ACH = ^DCB = 900

^CAH = ^CDB ( cmt ) 

Vậy tam giác CAH ~ tam giác CDB (g.g) 

=> CA/CD = CH/BC => AC.BC = CH.CD