Giải phương trình :
a) \(sin\left(4x+\pi\right)=sin35\) độ
b) sin4x=\(\frac{1}{5}\) .
c) \(sin\left(x+\frac{8\pi}{7}\right)=3\)
d) sinx=-7
e) \(sin\left(3x+\pi\right)=sin\left(2x-3\pi\right)\).
f) \(sin\left(4x-\frac{\pi}{2}\right)=sin\left(\pi-2x\right)\)
a. \(sin\left(4x+\pi\right)=sin35^o\)
\(\Leftrightarrow sin\left(4x+180^o\right)=sin35^o\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+180^o=35^o+k.360^o,k\in Z\\4x+180^o=180^o-35^o+k.360^o,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-145^o+k.360^o,k\in Z\\4x=-35^o+k.360^o,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{145^o}{4}+k.90,k\in Z\\x=-\frac{35^o}{4}+k.90^o,k\in Z\end{matrix}\right.\)
Vậy.....
b.\(sin4x=\frac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=arcsin\left(\frac{1}{5}\right)+k2\pi,k\in Z\\4x=\pi-arcsin\left(\frac{1}{5}\right)+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{arcsin\left(\frac{1}{5}\right)}{4}+\frac{k\pi}{2},k\in Z\\x=\frac{\pi}{4}-\frac{arcsin\left(\frac{1}{5}\right)}{4}+\frac{k\pi}{2},k\in Z\end{matrix}\right.\)
Vậy....
c. \(sin\left(x+\frac{8\pi}{7}\right)=3\)
Ta có: \(-1\le sinx\le1\)
\(\Rightarrow-1\le sin\left(3x+\frac{8\pi}{7}\right)\le1\)
Do đó phương trình trên vô nghiệm
d. \(sinx=-7\)
Ta có: \(-1\le sinx\le1\)
Do đó phương trình trên vô nghiệm
e. \(sin\left(3x+\pi\right)=sin\left(2x-3\pi\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\pi=2x-3\pi+k2\pi,k\in Z\\3x+\pi=\pi-2x+3\pi+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\pi+k2\pi,k\in Z\\5x=3\pi+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\pi+k2\pi,k\in Z\\x=\frac{3}{5}\pi+\frac{k2\pi}{5},k\in Z\end{matrix}\right.\)
Vậy......
f. \(sin\left(4x-\frac{\pi}{2}\right)=sin\left(\pi-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{2}=\pi-2x+k2\pi,k\in Z\\4x-\frac{\pi}{2}=\pi-\pi+2x+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=\frac{3}{2}\pi+k2\pi,k\in Z\\2x=\frac{\pi}{2}+k2\pi,k\in Z\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{3},k\in Z\\x=\frac{\pi}{4}+k\pi,k\in Z\end{matrix}\right.\)
Vậy......