K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

b: Xét ΔBAD vuông tại A có AH là đường cao

nên \(DH\cdot DB=AD^2\left(1\right)\)

Xét ΔADM vuông tại D có DH là đường cao

nên \(AH\cdot AM=AD^2\left(2\right)\)

Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)

b: Xét ΔADM vuông tại D có DH là đường cao ứng với cạnh huyền AM

nên \(AH\cdot AM=AD^2\left(1\right)\)

Xét ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền DB

nên \(DH\cdot DB=AD^2\left(2\right)\)

Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔADK vuông tại D có DH là đường cao ứng với cạnh huyền AK, ta được:

\(AH\cdot AK=AD^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(DH\cdot DB=AD^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AH\cdot AK=DH\cdot DB\)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(DH\cdot DB=AD^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADK vuông tại D có DH là đường cao ứng với cạnh huyền AK, ta được:

\(AH\cdot AK=AD^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(DH\cdot DB=AH\cdot AK\)

a) Xét ΔAHD vuông tại H và ΔBAD vuông tại A có 

\(\widehat{ABD}\) chung

Do đó: ΔAHD∼ΔBAD(g-g)

Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:

\(AH^2+HD^2=AD^2\)

\(\Leftrightarrow HD^2=AD^2-AH^2=5^2-4^2=9\)

hay HD=3(cm)

Ta có: ΔAHD∼ΔBAD(cmt)

nên \(\dfrac{AH}{BA}=\dfrac{HD}{AD}=\dfrac{AD}{BD}\)

\(\Leftrightarrow\dfrac{4}{AB}=\dfrac{3}{5}\)

hay \(AB=\dfrac{20}{5}cm\)

Vậy: \(AB=\dfrac{20}{5}cm\)

b) Xét ΔAHD vuông tại H và ΔBHA vuông tại H có 

\(\widehat{HAD}=\widehat{HBA}\left(=90^0-\widehat{ADH}\right)\)

Do đó: ΔAHD∼ΔBHA(g-g)

\(\dfrac{AH}{BH}=\dfrac{HD}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HA^2=HB\cdot HD\)(đpcm)

20 tháng 10 2021

a) theo đinh lí Py ta go ta có: BD2 = AB2 + AD2  = 6 + 82 => BD = 10

có SABC = 1/2 AD. AB = 1/2 8.6= 24

=> SABC = 1/2 AH. DB => AH = SABC *10 * 1/2 = 4.8

Do mình tính nhẩm nên có sai sót chỗ đáp số nào đó bạn thông cảm cho mình nha

20 tháng 10 2021

Trả lời giúp mình với mk cần gấp !!!!

a: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có

góc D chung

=>ΔAHD đồng dạng với ΔBAD

b; Xét ΔDEA vuông tại D và ΔADB vuông tại A có

góc DEA=góc ADB

=>ΔDEA đồng dạng với ΔADB

=>DE/AD=AD/AB

=>AD^2=DE*AB

c: AD^2=DE*AB

=>DE=3^2/4=2,25cm

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.   a. Chứng minh △AHB và △BCD đồng dạng    b. Chứng minh BC.AB = AH.BD     c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD   a. Chứng minh: △CBN và △CDM cân    b. Chứng minh: △CBN \(\sim\) △MDN    c. Chứng minh: M,C,N thẳng hàng3) Cho △ABC vuông tại A (AB < AC)...
Đọc tiếp

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.

   a. Chứng minh △AHB và △BCD đồng dạng

    b. Chứng minh BC.AB = AH.BD 

    c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)

2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD

   a. Chứng minh: △CBN và △CDM cân

    b. Chứng minh: △CBN \(\sim\) △MDN

    c. Chứng minh: M,C,N thẳng hàng

3) Cho △ABC vuông tại A (AB < AC) có đường cao AH.

   a. Chứng minh: △ABH\(\sim\)△CBA

    b. Chứng minh: \(AH^2=BH.HC\)

    c. Trên đường thẳng vuông góc với AC tại C, lấy điểm D sao cho CD=AB (D và B nằm khác phía so với đường thẳng AC). Đoạn thẳng HD cắt đoạn thẳng AC tại S. Kẻ \(\text{AF}\perp H\text{S }t\text{ại F}\)

Chứng minh BH.CH = HF.HD

1

3:

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

 

14 tháng 6 2021

A D B C 8 15 H I M N

a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm 

Xét tam giác ABD vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABD 

\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)

14 tháng 6 2021

b, Xét tam giác AHB vuông tại H đường cao HI 

 \(AH^2=IA.AB\)( hệ thức lượng ) (1) 

Xét tam giác ABD vuông tại A đường cao AH 

\(AH^2=DH.BH\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )