K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác PAOM có

góc PAO+góc PMO=180 độ

=>PAOM là tứ giác nội tiếp

b: Xét (O) có

PA,PM là tiếp tuyến

nên PA=PM và OP là phân giác của góc MOA(1)

mà OA=OM

nên OP là trung trực của AM

=>OP vuông góc AM

Xét (O) có

QM,QB là tiếp tuyến

nên QM=QB và OQ là phân giác của góc MOB(2)

mà OM=OB

nên OQ là trung trực của MB

=>OQ vuông góc MB tại K

Từ (1), (2) suy ra góc POQ=1/2*180=90 độ

Xét tứ giác MIOK có

góc MIO=góc MKO=góc IOK=90 độ

=>MIOK là hình chữ nhật

Xét ΔOPQ vuông tại O có OM là đường cao

nên MP*MQ=OM^2=R^2

=>AP*QB=OM^2=R^2 ko đổi

a: Xét (O) có

OM là bán kính

EF vuông góc OM tại M

Do đó: EF là tiếp tuyến của (O)

b: Xét (O) có

EM.EA là tiếp tuyến

nên EM=EA
Xét(O) có

FM,FB là tiếp tuyến

nên FM=FB

EF=EM+MF

=>EF=EA+FB

NV
8 tháng 5 2023

C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM

\(\Rightarrow E\) là trung điểm AM

Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM

\(\Rightarrow EF\) là đường trung bình tam giác ABM 

\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)

Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM 

\(\Rightarrow OF=\dfrac{1}{2}AM=AE\) 

Mà \(OF||AE\) (cùng vuông góc BM)

\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)

Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)

\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)

Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)

\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)

\(\Rightarrow ONEF\) là hình thang cân

NV
7 tháng 5 2023

loading...

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC

 

1: Xét (O) có 

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CD=CM+MD

nên CD=CA+DB

11 tháng 12 2021

a: Xét (O) có

DM là tiếp tuyến

DA là tiếp tuyến

Do đó: OD là tia phân giác của góc MOA(1)

Xét (O) có 

EM là tiếp tuyến

EB là tiếp tuyến

Do đó: OE là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra ΔDOE vuông tại O

a: góc OAC+góc OMC=180 độ

=>OACM nội tiếp

b: góc BOM=2*60=120 độ

=>góc BDM=60 độ

=>ΔBMD đều

\(S_{qMB}=\dfrac{pi\cdot R^2\cdot120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)

12 tháng 5 2023

giúp em câu b,c với ạ 

 

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF