Hai vòi nước cùng chảy vào một bể không có nước thì sau 6 giờ 40 phút đầy bể. Biết rằng năng suất vòi một gấp đôi năng suất vòi hai. Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể nước đó trong bao nhiêu giờ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi 1 chảy một mình với công suất bình thường đầy bể là x giờ thời gian vòi 2 chảy một mình với công suất bình thường đầy bể là y giờ
ĐK: x, y > 12
Trong 1 giờ, vòi 1 chẩy được 1/x bể
Trong 1 giờ, vòi 2 chẩy được 1/y bể
Trong 1 giờ, cả hai vòi chẩy được 1/12 bể
Ta có phương trình: 1/x + 1/y = 1/12 (1)
Trong 8 giờ cả hai vòi chẩy được 8/12 bể hay 2/3 bể còn lại là 1/3 bể vòi 2 chẩy trong 3,5 giờ với năng suất là 2/y ta có phương trình:
3,5 . 2/y = 1/3 hay 7/y = 1/3 (2) Từ (1) và (2)
ta có hệ phương trình: {1/x + 1/y = 1/12 (1) {7/y = 1/3 (2)
Giải HPT này ta tìm được: x = 28 (tmđk) y = 21 (tmđk)
Vậy thời gian vòi 1 chảy một mình với công suất bình thường đầy bể là 28 giờ thời gian vòi 2 chảy một mình với công suất bình thường đầy bể là 21 giờ
Đổi : 6h 40' = \(6\frac{2}{3}\)h
Gọi thời gian vòi thứ nhất chảy riêng để đầy bể là x giờ (x > 3)
\(\Rightarrow\)Thời gian vòi thứ hai chảy riêng để đầy bể là x - 3 giờ
Ta có phương trình :
\(\frac{1}{x}+\frac{1}{x-3}=\frac{1}{6\frac{2}{3}}\)
\(\Leftrightarrow\frac{x-3+x}{x^2-3x}=\frac{3}{20}\)
\(\Leftrightarrow\frac{2x-3}{x^2-3x}=\frac{3}{20}\)
\(\Leftrightarrow40x-60=3x^2-9x\)
\(\Leftrightarrow3x^2-49x+60=0\)
\(\Leftrightarrow\left(x-15\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\3x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=\frac{4}{3}\left(ktm\right)\end{cases}}\)
Vậy thời gian vòi thứ nhất chảy một mình để bể đầy là 15 giờ
thời gian vòi thứ hai chảy một mình để bể đầy là 15 - 3 = 12 giờ
Đổi 40 phút = 2/3 giờ
1 giờ vòi 1 chảy được 1 : 2 = 1/2 bể
1 giờ vòi 2 chảy được : 1 : 3 = 1/3 bể
1 giờ 2 vòi chảy được 1/2 + 1/3 = 5/6
=> 40 phút 2 vòi chảy được : 2/3 x 5/6 = 5/9 = 55,56% bể