Tính B = 1 + 2 + 3 + ... + 98 + 99
Cảm ơn các bạn nhờ các bạn giúp mình cách giải
Thanks you>.<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,-1 + 3 - 5 + 7 -... + 97 - 99
-1 + ( 3 - 5 ) + (7 - 9 ) + ... + ( 97 - 99 )
-1 + (-2) + (-2) +...+(-2)
-1 + (-2) x 49
-1+(-98)
-99
B,1+2-3-4+...+97+98-99-100
(1+2-3-4)+...+(97+98-99-100)
(-4)+...+(-4)
(-4) x 25
-100
tiện thể bạn giải hộ mình câu này
14ab:26=ab
Lời giải:
$A=\underbrace{(100+98+96+....+2)}_{M}-\underbrace{(99+97+....+1)}_{N}$
Tổng số hạng của $M$: $(100-2):2+1=50$
$M=(100+2).50:2=2550$
Tổng số hạng của $N$: $(99-1):2+1=50$
$N=(99+1).50:2=2500$
$A=M-N=2550-2500=50$
Sửa đề: A=100+98+96+...+2-99-97-...-1
=100-99+98-97+...+2-1
=1+1+...+1
=50
\(S=1+2+3+...+99+100\)
\(S=\left(100+1\right).\left[\left(100-1\right)+1\right]:2=5050\)
Số lượng số hạng của tổng S là :
\(\left(100-1\right):1+1=100\) ( số )
Tổng S có giá trị là :
\(\frac{\left(100+1\right)\times100}{2}=5050\)
Đáp số: \(5050\)
=-2+-2+..+-2(có 50 số số hạng)
=-2.50:2=-50
mình nhanh nhất nhé
999 + 3 + 98 + 998 + 3 + 9
= ( 999 + 1 ) + ( 98 + 2 ) + ( 998 + 2 ) + ( 99 + 1 ) + ( 9 + 1 )
= 1000 + 100 + 1000 + 100 + 10
= 2110
636 - 576 - 99 + 367
= ( 636 + 364 ) + 3 - ( 575 + 100 )
= 900 - ( 675 - 3 )
= 228
5034 - 997 - 998 - 999
= 5034 + 6 - ( 1000 + 1000 + 1000 )
= 5040 - 3000
= 2040
Mỏi tay quá k giúp mình nhé !!!!!!
\(\frac{1.3.5+2.6.10+4.12.20+7.21.35}{1.5.7+2.10.14+4.20.28+7.35.49}\)
\(=\frac{1.3.5\left(1+2+4+7\right)}{1.5.7\left(1+2+7+7\right)}=\frac{1.3.5}{1.5.7}=\frac{15}{35}=\frac{3}{7}\)
\(\frac{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20+7\cdot21\cdot35}{1\cdot5\cdot7+2\cdot10\cdot14+4\cdot20\cdot28+7\cdot35\cdot49}\)
\(=\)\(\frac{1\cdot3\cdot5\cdot\left(1+2+4+7\right)}{1\cdot5\cdot7\cdot\left(1+2+7+7\right)}\)
\(=\frac{1\cdot3\cdot5}{1\cdot5\cdot7}\)\(=\frac{15}{35}=\frac{3}{7}\)
bn vội quá viết nhầm lun kìa
hj hj chúc bn làm bài tốt nha
Công thức này bạn ko cần chứng minh lại nhé !
\(1+2+3+.....+n=\frac{n\left(n+1\right)}{2}\)
Áp dụng với n = 99 ta có:
\(1+2+3+....+98+99=\frac{98\cdot\left(99+1\right)}{2}=4900\)
Vậy B=4900
giải
Từ 1 đến 99 có 99 số hạng
Tổng B cần tìm là:
( 99+1 ).99:2=4950
đ/s:4950