K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

a) \(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} + \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{1}{2} = \frac{{ - \sqrt 3  + 3\sqrt 2 }}{6}\)      

b) \(\cos \left( {\alpha  + \frac{\pi }{6}} \right) = \cos \alpha .\cos \frac{\pi }{6} - \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 6 }}{3}.\frac{1}{2} =  - \frac{{3 + \sqrt 6 }}{6}\)

c) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 6 }}{6}\)

d) \(\cos \left( {\alpha  - \frac{\pi }{6}} \right) = \cos \alpha \cos \frac{\pi }{6} + \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 6 }}{3}.\frac{1}{2} = \frac{{ - 3 + \sqrt 6 }}{6}\)

25 tháng 4 2023

Này là kiến thức lớp 10 mà bạn...

NV
20 tháng 4 2019

\(cot\left(a+\frac{\pi}{3}\right)=-\sqrt{3}\Leftrightarrow\frac{cos\left(a+\frac{\pi}{3}\right)}{sin\left(a+\frac{\pi}{3}\right)}=-\sqrt{3}\)

\(\Leftrightarrow cos\left(a+\frac{\pi}{3}\right)=-\sqrt{3}sin\left(a+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cosa.cos\frac{\pi}{3}-sina.sin\frac{\pi}{3}=-\sqrt{3}\left(sinacos\frac{\pi}{3}+cosa.sin\frac{\pi}{3}\right)\)

\(\Leftrightarrow\frac{1}{2}cosa-\frac{\sqrt{3}}{2}sina+\frac{\sqrt{3}}{2}sina+\frac{3}{2}cosa=0\)

\(\Leftrightarrow2cosa=0\Rightarrow cosa=0\Rightarrow a=\frac{3\pi}{2}\)

\(\Rightarrow P=sin\left(\frac{3\pi}{2}+\frac{\pi}{6}\right)+cos\frac{3\pi}{2}=-\frac{\sqrt{3}}{2}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,\dfrac{1}{tan\alpha+1}+\dfrac{1}{cot\alpha+1}\\ =\dfrac{cot\alpha+1+tan\alpha+1}{\left(tan\alpha+1\right)\left(cot\alpha+1\right)}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha\cdot cot\alpha+tan\alpha+cot\alpha+1}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha+cot\alpha+2}\\ =1\)

\(b,cos\left(\dfrac{\pi}{2}-\alpha\right)-sin\left(\pi+\alpha\right)\\ =sin\alpha+sin\alpha\\ =2sin\alpha\)

\(c,sin\left(\alpha-\dfrac{\pi}{2}\right)+cos\left(-\alpha+6\pi\right)-tan\left(\alpha+\pi\right)cot\left(3\pi-\alpha\right)\\ =-sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\alpha\right)-tan\left(\alpha\right)cot\left(\pi-\alpha\right)\\ =-cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\alpha\right)\cdot cot\left(\alpha\right)\\ =1\)

NV
10 tháng 4 2019

Câu 1:

\(tan\left(a+\frac{\pi}{4}\right)=1\Rightarrow a+\frac{\pi}{4}=\frac{\pi}{4}+k\pi\Rightarrow a=k\pi\) (\(k\in Z\) )

Do \(\frac{\pi}{2}< a< 2\pi\Rightarrow\frac{\pi}{2}< k\pi< 2\pi\Rightarrow\frac{1}{2}< k< 2\Rightarrow k=1\Rightarrow a=\pi\)

\(\Rightarrow P=cos\left(\pi-\frac{\pi}{6}\right)+sin\pi=-\frac{\sqrt{3}}{2}\)

Câu 2:

\(cot\left(a+\frac{\pi}{3}\right)=-\sqrt{3}=cot\left(-\frac{\pi}{6}\right)\)

\(\Rightarrow a+\frac{\pi}{3}=-\frac{\pi}{6}+k\pi\Rightarrow a=-\frac{\pi}{2}+k\pi\) (\(k\in Z\))

\(\Rightarrow\frac{\pi}{2}< -\frac{\pi}{2}+k\pi< 2\pi\Rightarrow-\pi< k\pi< \frac{5\pi}{2}\)

\(\Rightarrow-1< k< \frac{5}{2}\Rightarrow k=\left\{0;1;2\right\}\Rightarrow a=\left\{-\frac{\pi}{2};\frac{\pi}{2};\frac{3\pi}{2}\right\}\) \(\Rightarrow cosa=0\)

\(\Rightarrow P=sin\left(\pi+\frac{\pi}{6}\right)+0=-sin\frac{\pi}{6}=-\frac{1}{2}\)

NV
10 tháng 4 2019

Vậy đáp án sai

Bạn thay thử \(a=\frac{3\pi}{2}\) vào biểu thức ban đầu coi có đúng \(cot\left(a+\frac{\pi}{3}\right)=-\sqrt{3}\) ko là biết đáp án đúng hay sai liền mà

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a, Ta có: \({\sin ^2}x + co{s^2}x = 1\)

\(\begin{array}{l} \Leftrightarrow {\sin ^2}\alpha  + {\left( {\frac{1}{3}} \right)^2} = 1\\ \Leftrightarrow \sin \alpha  =  \pm \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}}  =  \pm \frac{{2\sqrt 2 }}{3}\end{array}\)

Vì \( - \frac{\pi }{2} < \alpha  < 0\) nên \(sin\alpha  < 0 \Rightarrow \sin \alpha  =  - \frac{{2\sqrt 2 }}{3}\).

\(b)\;\,sin2\alpha  = 2sin\alpha .cos\alpha  = 2.\left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{1}{3} =  - \frac{{4\sqrt 2 }}{9}\)

\(c)\;cos(\alpha  + \frac{\pi }{3}) = cos\alpha .cos\frac{\pi }{3} - sin\alpha .sin\frac{\pi }{3}\)\( = \frac{1}{3}.\frac{1}{2} - \left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{{\sqrt 3 }}{2} = \frac{{2\sqrt 6  + 1}}{6}\).

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

\(\cos \alpha  =  - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}}  =  - \frac{{12}}{{13}}\) (vì \(\pi  < \alpha  < \frac{{3\pi }}{2}\))

\(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)

\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha  + \sin \frac{\pi }{4}sin\alpha  = \frac{{ - 17\sqrt 2 }}{{26}}\)

NV
25 tháng 4 2019

\(\pi< a< \frac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\) \(\Rightarrow tana=\frac{sina}{cosa}=\frac{3}{4}\)

b/ \(sina=\frac{\sqrt{3}}{3}???cosa=\frac{\sqrt{3}}{3}???\)