Cho hình thang vuông ABCD có góc A=góc B=90o và AD=2BC. Kẻ AH vuông góc với BD (H thuộc BD). Gọi I là trung điểm của HD. CMR CI vuông góc với AI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 9. Cho hình thang vuông ABCD, có = = 90o và AD = 2BC. Kẻ AH vuông góc với BD (H thuộc BD). Gọi I là trung điểm của HD.
Chứng minh rằng: CI ^ AI
Giải:
Gọi G là trung điểm AD. Suy ra GI là đường trung bình traong tam giác ADH => GI // AH.
Vẽ IJ // AD => Tứ giác AGIJ là hình bình hành => AG = IJ = BC => Tứ giác BCIJ cũng là hình bình hành.
Vì IJ // AD => IJ vuông góc với AB. Trong tam giác ABI thì J là giao điểm hai đường cao IJ và AH nên J là trực tâm => BJ vuông góc AI.
Mà BJ // CI (Do tứ giác BCIJ là hình bình hành) nên CI vuông góc với AI.
b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)
mà \(AB=BC=\dfrac{AD}{2}\)
nên AE=ED=AB=BC
Xét tứ giác AECB có
AE//CB
AE=CB
Do đó: AECB là hình bình hành
mà \(\widehat{EAB}=90^0\)
nên AECB là hình chữ nhật
mà AE=AB
nên AECB là hình vuông
Xét ΔHAD có
N là trung điểm của AH
M là trung điểm của HD
Do đó: MN là đường trung bình của ΔHAD
Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)
mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC
nên MN//BC và MN=BC
Xét tứ giác BCMN có
MN//BC
MN=BC
Do đó: BCMN là hình bình hành
b: Xét ΔIAK và ΔIBC có
góc IAK=góc IBC
góc AIK=góc BIC
=>ΔIAK đồng dạng với ΔIBC
=>IK/IC=IA/IB=1/2
=>CI=2/3CK
Xét ΔCAA' có
CK là trung tuyến
CI=2/3CK
=>I là trọng tâm
a, Xét tg AHD và tg CIB có \(AD=BC;\widehat{AHD}=\widehat{CIB}=90^0;\widehat{ADH}=\widehat{CBI}\left(so.le.trong\right)\) nên \(\Delta AHD=\Delta CIB\left(ch-gn\right)\)
Do đó \(AH=CI\)
Mà AH//CI (⊥BD) nên AHCI là hbh
b, Vì AHCI là hbh mà M là trung điểm HI nên cũng là trung điểm AC
Do đó A đối xứng C qua M