\(A=\frac{1}{1x2x3}+\frac{1}{2x3x4}+...+\frac{1}{2018x2019x2020}+\frac{1}{2x2019x2020}\)
A=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{37\times38}-\frac{1}{38\times39}\)
\(=\frac{1}{1\times2}-\frac{1}{38\times39}=\frac{1}{2}-\frac{1}{1482}=\frac{370}{741}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{36.37.37}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{36.37.38}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{36.37}-\frac{1}{37.38}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{37.38}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1406}\right)\)
\(=\frac{1}{2}.\frac{351}{703}\)
\(=\frac{351}{1046}\)
\(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{36\times37\times38}+\frac{1}{37\times38\times39}\)
\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{36\times37\times38}+\frac{2}{37\times38\times39}\)
\(2A=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{37\times38}-\frac{1}{38\times39}\)
\(2A=\frac{1}{1\times2}-\frac{1}{38\times39}\)
\(2A=\frac{741}{1482}-\frac{1}{1482}\)
\(2A=\frac{370}{741}\)
\(A=\frac{370}{741}:2=\frac{185}{741}\)
A=\(\frac{1}{1x2x3}+\frac{1}{2x3x4}+...+\frac{1}{37x38x39}\)
=\(\frac{1}{2}x\left(\frac{1}{1x2}-\frac{1}{2x3}+\frac{1}{2x3}-\frac{1}{3x4}+...+\frac{1}{37x38}-\frac{1}{38x39}\right)=\frac{1}{2}x\left(\frac{1}{2}-\frac{1}{38x39}\right)=\frac{185}{741}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+......+\frac{1}{48.49.50}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\frac{612}{1225}=\frac{612}{2450}=\frac{306}{1225}\)
Do not ask why hay quá!
Đặt \(T=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
Ta xét:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{1}{1.2.3}\);\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{2.3.4}\);. . . ; \(\frac{1}{48.49}-\frac{1}{49.50}=\frac{1}{48.49.50}\)
Rút ra dạng tổng quát,ta có: (mình nói thêm nhé)
\(\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
Ta nhận thấy: \(-\frac{1}{2.3}+\frac{1}{2.3}=0\);\(-\frac{1}{3.4}+\frac{1}{3.4}=0\);.....
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{49.50}=\frac{612}{1225}\)
\(\Rightarrow T=\frac{612}{\frac{1225}{2}}=\frac{306}{1225}\)
Vậy .. . .
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{90}\)
\(=\frac{22}{45}\)
Gọi tổng trên là S , ta có :
S = 1/1.2.3 + 1/2.3.4 + ... + 1/8.9.10
S.2 = 2/1.2.3 + 1/2.3.4 + ... + 1/8.9.10
S.2 = 3 -1 /1.2.3 + 4 - 2/2.3.4 + ... + 10 - 8/8.9.10
S.2= 3/1.2.3 - 1/1.2.3 + 4/2.3.4 - 2/2.3.4 + ... + 10/8.9.10 - 8 /8.9.10
S.2 =1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/8.9 - 1/9.10
S.2 = 1/2 - 1/90
S = 1/4 - 1/360
S= 89/360
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.......+\frac{1}{8.9.10}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+......+\frac{2}{8.9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+.......+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
A = \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2014.2015.2016}\right)=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)=\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4062240}\right)=\frac{1}{4}-\frac{1}{8124480}
Nhận xét: \(\frac{2}{1.2.3}=\frac{3-1}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
\(\frac{2}{2.3.4}=\frac{4-2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)
........................
\(\frac{2}{2014.2015.2016}=\frac{2016-2014}{2014.2015.2016}=\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
=> \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2014.2015.2016}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
=> 2.A = \(2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2014.2015.2016}\right)=\frac{1}{1.2}-\frac{1}{2015.2016}
Trả lời:
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2018.2019.2020}+\frac{1}{2.2019.2020}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2018.2019.2020}+\frac{2}{2.2019.2020}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2018.2019}-\frac{1}{2019.2020}+\frac{1}{2019.2020}\right)\)
\(A=\frac{1}{2}.\frac{1}{1.2}\)
\(A=\frac{1}{4}\)