Cho STN N = 20172016. Viết N thành tổng của k (k là STN khác 0) số tự nhiên nào đó n1;n2;...;nk. Đặt Sn = n13 + n23 +...+ nk3
Tìm số dư khi S chia cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của trần như - Toán lớp 7 - Học toán với OnlineMath
Bài 1 em tham khảo tại link trên nhé.
Ta thấy: \(2017^{2016}\equiv1\)(mod 6)
Từ đó: (1 <= i <= k) \(\text{Σ}n_i\equiv1\)(mod 6)
Dễ chứng minh: \(\left(6k+m\right)^3\equiv m\equiv6k+m\)(mod 6) với 0<=m<=6
Từ đó ta có: \(x^3\equiv x\)(mod 6) với x là số tự nhiên
Vậy \(\text{Σ}n_i^3\equiv\text{Σ}n_i\equiv1\)(mod 6)
Vậy \(\text{Σ}n_i^3\)chia 6 dư 1
ta có: \(N=2017^{2016}\)
xét \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên a3-a chia hết cho 6 với mọi a
đặt N=\(n_1+n_2+...+n_k=2017^{2016}\)
\(\Rightarrow S-N=\left(n_1^5+n_2^3+....+n_k^3\right)-\left(n_1+....+n_k\right)=\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+....+\left(n_k^3-n_k\right)\)
\(\Rightarrow S-N⋮6\)
=> S và N cùng số dư khi chia cho 6
thấy 2017 chia 6 dư 1
20172016 chia 6 dư 1 => N chia 6 dư 1
=> S chia 6 dư 1