một cửa hàng có 3 tấm vải dài tổng cộng 116m. Sau khi đã bán 1/2 tấm thứ nhất, 1/3 tấm thứ hai và 1/4 tấm thứ 3, thì số vải còn lại ở ba tấm bằng nhau. tính chiều dài mỗi tấm.
Cho m xin lời giải cụ thể vơi, M cám ơn !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi các tấm vải tứ tự là x,y,z
khi bán đi mỗi tấm còn lại ta có dãy số bằng nhau
x/2=y/3=z/4 => x/2+y/3+z/4 = 108/9 = 12
x= 12.2=24m
y=12.3=36m
z=12.4=48m
- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(\in\) N*)
- Theo đề bài ta có:
+ Sau khi bán \(\frac{1}{2}\)tấm thứ nhất thì tấm thứ nhất còn lại: \(a-a.\frac{1}{2}=a.\frac{1}{2}=\frac{a}{2}\)(1)
+ Sau khi bán \(\frac{2}{3}\)tấm thứ hai thì tấm thứ hai còn lại: \(b-b.\frac{2}{3}=b.\frac{1}{3}=\frac{b}{3}\)(2)
+ Sau khi bán \(\frac{3}{4}\)tấm vải thứ ba thì tấm thứ ba còn lại: \(c-c.\frac{3}{4}=c.\frac{1}{4}=\frac{c}{4}\)(3)
Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
+ Ba tấm vải dài tổng cộng 108m \(\Rightarrow\) \(a+b+c=108\left(m\right)\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow a=12.2=24\left(m\right)\) ; \(b=12.3=36\left(m\right)\); \(c=12.4=48\left(m\right)\)
Vậy
Gọi chiều dài 3 tấm vải lần lượt là a;b;c (m) (a;b;c > 0)
Vì tổng chiều dài 3 tấm vải là 108 m nên a + b + c = 108
Do sau khi bán \(\frac{1}{2}\) tấm thứ nhất, \(\frac{2}{3}\) tấm thứ hai và \(\frac{3}{4}\) tấm thứ 3 thì số m vải còn lại ở 3 tấm bằng nhau nên
\(a-\frac{1}{2}a=b-\frac{2}{3}b=c-\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{b}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow\begin{cases}a=12.2=24\\b=12.3=36\\c=12.4=48\end{cases}\)
Vậy tấm vải thứ nhất dài 24 m, tấm vải thứ 2 dài 36 m, tấm vải thứ 3 dài 48 m
Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)
Vì 3 tấm vải dài tổng cộng là 108 (m)
⇒ x+y+z=108 (1)
Sau khi bán đi tấm vải thú 1 được :
1-1/2=1/2
Sau khi bán tấm vải thứ 2 được :
1-2/3=1/3
Sau khi bán tấm vải thứ 3 được :
1-3/4=1/4 (2)
Từ (1) và (2), ta có:
x/2=y/3=z/4=x+y+z/2+3+4=108/9=12
Ta có :
x/2=12⇒x=24
y/3=12⇒y=36
z/4=12⇒z=48
Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m
o(〃^▽^〃)o
Phân số chỉ số vải con lại lần lượt của 3 tấm là : 1/2; 1/3; 1/4
Tổng số phần bằng nhau : 2 + 3 + 4 = 9 phần
Chiều dai tấm 1 : 108 : 9 x 2 = 24 m
Chiều dai tấm 2 : 108 : 9 x 3 = 36 m
Chiều dai tấm 3 : 108 : 9 x 4 = 48 m
Gọi chiều dài 3 tấm vải lần lượt là \(x,y,z\left(x,y,z>0\right)\)
Mà tổng độ dài ba tấm vải là 108, nên ta có:
\(x+y+z=108\)
Sau khi họ bán đi \(\dfrac{1}{2}\) tấm vải thứ nhất, \(\dfrac{2}{3}\) tấm vải thứ hai và \(\dfrac{3}{4}\) tấm vải thứ ba thì số vải còn lại ở ba tấm bằng nhau nên tấm vải thứ nhất còn \(\dfrac{1}{2}\), tấm vải thứ hai còn \(\dfrac{1}{3}\) và tấm vải thứ ba còn \(\dfrac{1}{4}\) :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Leftrightarrow\dfrac{x+y+z}{2+3+4}=\dfrac{108}{9}=12\)
Do đó:
\(x=12.2=24\)
\(y=12.3=36\)
\(z=12.4=48\)
Vậy độ dài tấm vải thứ nhất là 24 m, độ dài tấm vải thứ hai là 36 m, độ dài tấm vải thứ ba là 48 m.