Cho tam giác ABC vuông tại A,M là một điểm bất kì thuộc AC.Vẽ MP vuông góc với BC tại D.Gọi E là giao điểm AB và MD.Chứng minh
a,Tam giác ABC đồng dạng với tam giác DBE
b,MA.MC=MD.ME
c,tam giác MDA đồng dạng với tam giác MEC
d,AB.AE=MA.AC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
10 tháng 7 2023
Xét ΔBKH vuông tại K và ΔBAC vuông tại A có
góc B chung
=>ΔBKH đồng dạng với ΔBAC
9 tháng 12 2021
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
Xét tam giác ABC và tam giác DBE, có
a. Xét tam giác ABC và tam giác DBE, có:
góc BAC = BDE (=90 độ)
góc B chung
nên tam giác ABC đồng dạng với tam giác DBE (g.g)
b. Ta có: góc BAC + góc CAE = 180 độ (do kề bù)
mà góc BAC = 90 độ => góc CAE = 180 - 90 = 90 (độ) hay góc MAE = 90 độ
Xét tam giác MAE và tam giác MDC, có
góc MAE = góc MDC (=90 độ)
góc AME = góc DMC (đối đỉnh)
=> tam giác MAE đồng dạng với tam giác MDC (g.g)
=> \(\frac{MA}{MD}=\frac{ME}{MC}\Rightarrow MA.MC=ME.MD\left(đpcm\right)\)
c. Ta có: \(\frac{MA}{MD}=\frac{ME}{MC}\Rightarrow\frac{MA}{ME}=\frac{MD}{MC}\)
Xét tam giác MDA và tam giác MEC, có:
góc DMA = góc EMC
\(\frac{MA}{ME}=\frac{MD}{MC}\)
nên tam giác MDA đồng dạng với tam giác MEC (g.c.g)
Vì tam giác MAE vuông tại A nên: góc AEM + góc AME = 90 độ
Vì tam giác MDC vuông tại D nên: góc DCM + góc DMC = 90 độ
mà góc AME = góc AMC 9 (đối đỉnh)
nên góc AEM = góc DCM
Xét tam giác ABC và tam giác AME, có
góc BAC = góc MAE (= 90 độ)
góc ACB = góc AEM
nên tam giác ABC đồng dạng tam giác AME (g.g)
=> \(\frac{AB}{AM}=\frac{AC}{AE}\Rightarrow AB.AE=AM.AC\)