Giải các phương trình sau:
1) 2cos2x + 6sinx.cosx + 6sin2x = 1
2) Cos2x – sinx.cosx – 2sin2x – 1 = 0
3) Cos2x + √3sinx.cosx – 1 = 0
4) 2√2(sinx + cosx).cosx = 3 + 2cos2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cos^2x+sin^2x+sinx.cosx\right)}{2cosx+3sinx}=cos^2x-sin^2x\)
\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(1+sinx.cosx\right)}{2cosx+3sinx}=\left(cosx-sinx\right)\left(cosx+sinx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\\\frac{1+sinx.cosx}{2cosx+3sinx}=sinx+cosx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow1+sinx.cosx=\left(sinx+cosx\right)\left(2cosx+3sinx\right)\)
\(\Leftrightarrow1+sinx.cosx=2sin^2x+3cos^2x+5sinx.cosx\)
\(\Leftrightarrow2sin^2x+3cos^2x+4sinx.cosx-1=0\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(2tan^2x+3+4tanx-1-tan^2x=0\)
\(\Leftrightarrow tan^2x+4tanx+2=0\)
\(\Leftrightarrow tanx=-2\pm\sqrt{2}\)
\(\Rightarrow x=arctan\left(-2\pm\sqrt{2}\right)+k\pi\)
c/
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx\right)=4\left(sinx-cosx\right)\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\sinx+4cosx-4=0\left(2\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
Xét (2) \(\Leftrightarrow\frac{1}{\sqrt{17}}sinx+\frac{4}{\sqrt{17}}cosx=\frac{4}{\sqrt{17}}\)
Đặt \(\frac{4}{\sqrt{17}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow cosx.cosa+sinx.sina=cosa\)
\(\Leftrightarrow cos\left(x-a\right)=cosa\)
\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)
a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4
<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0
- sinx=1 => 2cos2x-2cosx+2=0
pt trên vn
b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0
<=> cos(2sinx-1)+2sin2x+3sinx-2=0
<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0
<=> (2sinx-1)(cosx+sinx+2)=0
<=> sinx=1/2 hoặc cosx+sinx=-2(vn)
<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
1.
\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)
\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)
\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)
\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)
2.
Đề bài thiếu, cos?x
Và x thuộc khoảng nào?
3.
\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)
\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)
\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)
4.
\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)
\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)
Đây nè:
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
d/
Đặt \(sinx-cosx=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\) \(\Rightarrow\left|t\right|\le\sqrt{2}\)
\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\frac{1-t^2}{2}\)
Pt trở thành:
\(6t-1=\frac{1-t^2}{2}\)
\(\Leftrightarrow t^2+12t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{39}-6\\t=-\sqrt{39}-6< -\sqrt{2}\left(l\right)\end{matrix}\right.\) (ủa giáo viên ra đề ngẫu nhiên à?)
\(\Rightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{39}-6}{\sqrt{2}}\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\\x-\frac{\pi}{4}=\pi-arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
Lần sau bạn vào cái hình E để gửi câu hỏi nha!
\(P=\dfrac{sin^2\alpha-sin\alpha\cdot cos\alpha+2cos^2\alpha}{2sin^2\alpha-cos^2\alpha}\)
\(P=\dfrac{tan^2\alpha-tan\alpha+2}{2tan^2\alpha-1}\) (Chia cả tử và mẫu cho \(cos^2\alpha\))
\(P=\dfrac{3^2-3+2}{2\cdot3^2-1}=\dfrac{8}{17}\)
Chúc bn học tốt!
d/
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(\Leftrightarrow2\sqrt{2}\left(tanx+1\right)=\frac{3}{cos^2x}+2\)
\(\Leftrightarrow2\sqrt{2}tanx+2\sqrt{2}=3\left(1+tan^2x\right)+2\)
\(\Leftrightarrow3tan^2x-2\sqrt{2}tanx+5-2\sqrt{2}=0\)
Pt vô nghiệm
c/
\(\Leftrightarrow1-sin^2x+\sqrt{3}sinx.cosx-1=0\)
\(\Leftrightarrow\sqrt{3}sinx.cosx-sin^2x=0\)
\(\Leftrightarrow sinx\left(\sqrt{3}cosx-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\\sqrt{3}cosx=sinx\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)