K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

Ta có: \(\left(2x+3\right)^2-4\left(x-3\right)\left(x+3\right)\)

\(=4x^2+12x+9-4\left(x^2-9\right)\)

\(=4x^2+12x+9-4x^2+36\)

\(=12x+45\)

Câu 2:

Ta có: \(\frac{x}{2x-1}+\frac{x-2}{x^2-1}-\frac{5}{2x+2}\)

\(=\frac{2x\left(x-1\right)\left(x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}+\frac{2\left(x-2\right)\left(2x-1\right)}{2\left(x+1\right)\left(x-1\right)\left(2x-1\right)}-\frac{5\left(x-1\right)\left(2x-1\right)}{2\left(x+1\right)\left(x-1\right)\left(2x-1\right)}\)

\(=\frac{2x\left(x^2-1\right)+2\left(2x^2-5x+2\right)-5\left(2x^2-3x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x^3-2x+4x^2-10x+4-10x^2+15x-5}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x^3-6x^2+3x-1}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}\)

Câu 3:

Gọi số táo và số lê bạn An mua lần lượt là a,b(điều kiện: 0<a,b<41)

Vì số táo nhiều hơn số lê nên a>b

Theo đề bài, ta có:

\(a^2-b^2=41\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=41\)

\(\Leftrightarrow a-b;a+b\inƯ\left(41\right)\)

\(\Leftrightarrow a-b;a+b\in\left\{1;41;-1;-41\right\}\)

mà a>0 và b>0 và a>b

nên \(\left[{}\begin{matrix}\left\{{}\begin{matrix}a-b=1\\a+b=41\end{matrix}\right.\\\left\{{}\begin{matrix}a-b=41\\a+b=1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1+b\\1+b+b=41\end{matrix}\right.\\\left\{{}\begin{matrix}a=41+b\\41+b+b=1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1+b\\2b=40\end{matrix}\right.\\\left\{{}\begin{matrix}a=41+b\\2b=-40\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1+20=21\left(nhận\right)\\b=20\left(nhận\right)\end{matrix}\right.\\\left\{{}\begin{matrix}a=41+\left(-20\right)=21\\b=-20\left(loại\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=21\\b=20\end{matrix}\right.\)

Vậy: Bạn An mua 21 quả táo và 20 quả lê

Câu 4:

Diện tích đám đất đó là:

\(S=800\cdot500=400000\left(m^2\right)=0.4km^2\)

Vậy: Diện tích đám đất tính theo m2 là 400000m2

Diện tích đám đất tính theo km2 là 0.4km2

Câu 5:

Vì diện tích sân là 7035m2 nên ta có phương trình:

\(\left(2x+19\right)\left(2x-19\right)=7035\)

\(\Leftrightarrow4x^2-361=7035\)

\(\Leftrightarrow4x^2=7396\)

\(\Leftrightarrow x^2=1849\)

hay \(x=\sqrt{1849}=43m\)(thỏa mãn)

Chiều dài của sân là:

\(2\cdot43+19=86+19=105\left(m\right)\)

27 tháng 7 2020

bài hai hình như sai đề mà cũng cố làm cho được haizz

12 tháng 11 2016

b) (ko chép lại đề nhé)  \(=\frac{x^2\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\cdot\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x^2-xy+y^2\right)}=\frac{x\left(x-y\right)}{y}\)

Đơn thức đầu tiên trong mẫu của phân thức thứ 2 có lẽ là \(x^3y\) 

12 tháng 11 2016

xin loi em khong biet!

13 tháng 11 2016

Tự trình bày nha

a) MC : x^3 +1 

KQ: (x+1)^3 / (x^3 +1)

b) MC: 2x-4x^2 

KQ: -1/(2x)

18 tháng 11 2019

\(=\frac{16+x}{x^2-2x}-\frac{18}{x^2-2x}\)

\(=\frac{16+x-18}{x\left(x-2\right)}\)

\(=\frac{-2+x}{x\left(x-2\right)}\)

18 tháng 11 2019

a) \(\frac{16+x}{x^2-2x}+\frac{18}{2x-x^2}=\frac{16+x-18}{x^2-2x}=\frac{x-2}{x\left(x-2\right)}=\frac{1}{x}\)

b) \(\frac{2y}{2x^2-xy}+\frac{4x}{xy-2x^2}=\frac{2y-4x}{2x^2-xy}=\frac{-2\left(2x-y\right)}{x\left(2x-y\right)}=\frac{-2}{x}\)

c) \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}=\frac{4-x^2+2x^2-2x+5-4x}{x-3}=\frac{x^2-6x+9}{x-3}=\frac{\left(x-3\right)^2}{x-3}=x-3\)

14 tháng 11 2016

quy đồng rồi cộng thôi thánh, làm biếng thế

Bài 1: 

b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)

Bài 2: 

a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)

d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)

\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)

e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)

6 tháng 11 2016

mk ko biết làm 

xin lỗi bn nhae

xin lỗi vì đã ko giúp được bn

chcus bn học gioi!

nhae@@@

6 tháng 11 2016

mình không biết làm

tk nhé@@@@@@@@@@@@@@@@@@@@

LOL

hihi

17 tháng 12 2019

a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)

\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)

\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)

\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)

\(=\frac{2x-7-5+3x}{10x-4}\)

\(=\frac{5x-12}{10x-4}\)

\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)

\(x\left(x+1\right)+x\left(x-3\right)=4x\)

\(x^2+x+x^2-3x=4x\)

\(2x^2-2x=4x\)

\(2x^2-2x-4x=0\)

\(2x\left(x-3\right)=0\)

\(2x=0\Leftrightarrow x=0\)

hoặc 

\(x-3=0\Leftrightarrow x=3\)

22 tháng 4 2020

b) \(ĐKXĐ:x\ne\pm4\)

\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)

\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)

\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)

\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)

18 tháng 12 2021

a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)