1/ Giải hệ phương trình \(\left\{{}\begin{matrix}x^2+y^2=1\\4xy\left(2y^2-1\right)=1\end{matrix}\right.\)
Câu này em thử giải bằng cách thế x y bằng sin cos để giải, nhưng khi giải ra x rồi thì làm sao giải y vậy ạ? Tại nó dính k và π.
2/ Tìm số nghiệm thuộc đoạn [0; π] của phương trình sin x = \(\frac{1}{3}\)
Câu này em giải ra được x rồi nhưng lại dính arcsin, thế thì làm sao thế để xét vào trong đoạn trên ạ?
1/
Bạn chỉ cần tìm sin, cos trong \(\left[0;2\pi\right]\) là đủ (vì cả 2 hàm đều tuần hoàn với chu kì \(2\pi\))
Đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\) với \(a\in\left[0;2\pi\right]\)
\(\Rightarrow4sina.cosa\left(2cos^2a-1\right)=1\)
\(\Leftrightarrow2sin2a.cos2a=1\Leftrightarrow sin4a=1\)
\(\Rightarrow4a=\frac{\pi}{2}+k2\pi\Rightarrow a=\frac{\pi}{8}+\frac{k\pi}{2}\)
\(\Rightarrow0\le\frac{\pi}{8}+\frac{k\pi}{2}\le2\pi\Rightarrow a=\left\{\frac{\pi}{8};\frac{5\pi}{8};\frac{9\pi}{8};\frac{13\pi}{8};\frac{17\pi}{8}\right\}\)
\(\Rightarrow\left(x;y\right)=\left(sin\frac{\pi}{8};cos\frac{\pi}{8}\right);\left(sin\frac{5\pi}{8};cos\frac{5\pi}{8}\right)...\)
2.
\(sinx=\frac{1}{3}\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+l2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)\\x=\pi-arcsin\left(\frac{1}{3}\right)\end{matrix}\right.\)
(Vì \(0< \frac{1}{3}< 1\) nên \(0< arcsin\left(\frac{1}{3}\right)< \frac{\pi}{2}\) do đó nếu \(k>0\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi>2\pi\) ; nếu \(k\le-1\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi\le-\frac{3\pi}{2}\) đều ko thuộc \(\left[0;\pi\right]\Rightarrow k=0\).
Tương tự với \(l\))
Cho mình hỏi sao từ 0 < 1/3 < 1 thì suy ra đc 0 < arcsin (1/3) < pi/2 vậy?