Cho a,b,c là 3 số chính phương.
Chứng minh ràng : P = (a-b)(b-c)(c-a) chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81
a;b;c là các số chính phương nên viết được dưới dạng: \(a=x^2;b=y^2;c=z^2\mid x;y;z\in Z\)
Do đó, \(M=\left(a-b\right)\left(b-c\right)\left(c-a\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\left(y+z\right)\left(z-x\right)\left(z+x\right)\)
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = ﴾a ‐ b﴿﴾b ‐ c﴿﴾c ‐ a﴿
+Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1 ‐ Vì a, b, c chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> a ‐ b hoặc b ‐ c hoặc c ‐ a chia hết cho 3
=> A chia hết cho 3 ﴾1﴿ ‐ Vì a, b, c chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> a ‐ b hoặc b ‐ c hoặc c ‐ a chia hết cho 4
=> A chia hết cho 4 ﴾2﴿
Tư ﴾1﴿ và ﴾2﴿ kết hợp với ƯCLN ﴾3,4﴿ = 1
=> A chia hết cho 3 x 4
=> A chia hết cho 12
Vậy ...
Lời giải:
Một số chính phương khi chia cho 3 có dư 0 hoặc 1 (2 loại số dư). Mà có 3 số $A,B,C$ nên theo nguyên lý Đi-rích-lê thì tồn tại $[\frac{3}{2}]+1=2$ số có cùng số dư khi chia cho 3.
Giả sử đó là hai số $A,B$. Khi đó: $A-B\vdots 3\Rightarrow (A-B)(B-C)(C-A)\vdots 3(*)$
Lại có:
Nếu trong 3 số $A,B,C$ có ít nhất 2 số chẵn. Không mất tổng quát gọi 2 số đó là A và B.
Vì $A,B$ là số chính phương chẵn nên $A\vdots 4; B\vdots 4$
$\Rightarrow A-B\vdots 4\Rightarrow (A-B)(B-C)(C-A)\vdots 4$
Nếu $A,B,C$ có 1 số chẵn 2 số lẻ. Giả sử 2 số lẻ là $A,B$. Vì $A,B$ là scp lẻ nên $A,B$ chia 8 cùng dư 1.
$\Rightarrow A-B\vdots 8\Rightarrow (A-B)(B-C)(C-A)\vdots 8\vdots 4$
Nếu $A,B,C$ là 3 số lẻ. Khi đó $A-B\vdots 2; B-C\vdots 2; C-A\vdots 2$
$\Rightarrow (A-B)(B-C)(C-A)\vdots 8\vdots 4$
Vậy $(A-B)(B-C)(C-A)\vdots 4(**)$
Từ $(*); (**)\Rightarrow (A-B)(B-C)(C-A)\vdots (3.4=12)$
\(a=x^2;b=y^2;c=z^2\)
\(P=\left(a-b\right)\left(b-c\right)\left(c-a\right)=\left(x^2-y^2\right)\left(y^2-z^2\right)\left(z^2-x^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(y-z\right)\left(y-z\right)\left(z-x\right)\left(z+x\right)\)
..............................
a=x2;b=y2;c=z2 P=(a−b)(b−c)(c−a)=(x2−y2)(y2−z2)(z2−x2) =(x−y)(x+y)(y−z)(y−z)(z−x)(z+x)