K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

À ờm...đúng là sai thật, có thể ib mik gửi đề cho ạ

14 tháng 5 2020

Bạn hỏi câu này bên Hoidap247 đúng không nè? :)

a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)

Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

Vậy GTLN của P = 2019 tại \(x=-1\).

b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)

\(\Rightarrow2020-\left|2019-x\right|\le2020\)

Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)

\(\Rightarrow2019-x=0\)

\(\Rightarrow x=2019\)

Vậy GTLN của Q = 2020 tại \(x=2019\).

14 tháng 5 2020

a) \(P=2019-\left(x+1\right)^{2020}\)

Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)

Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)

<=> x+1=0

<=> x=-1

Vậy MaxA=2019 đạt được khi x=-1

b) \(Q=2020-\left|2019-x\right|\)

Ta có \(\left|2019-x\right|\ge0\forall x\)

\(\Rightarrow2020-\left|2019-x\right|\ge2020\)

Dấu "=" xảy ra <=> |2019-x|=0

<=> 2019-x=0

<=> x=2019

Vậy MaxQ=2020 đạt được khi x=2019

23 tháng 9 2020

Ta có: \(2020=x\Rightarrow2019=x-1\)

Thay vào ta được:

\(D=x^{2020}+\left(x-1\right)^{2019}+\left(x-1\right)^{2018}+...+\left(x-1\right)x+1\)

\(D=x^{2020}+x^{2020}-x^{2019}+x^{2019}-x^{2018}+...+x^2-x+1\)

\(D=2x^{2020}-x+1\)

\(D=2\cdot2020^{2020}-2020+1\)

Bạn xem lại đề nhé

23 tháng 9 2020

x = 2020 => 2019 = x - 1

Thế vào D ta được

D = x2020 + ( x - 1 )x2019 + ( x - 1 )x2018 + ... + ( x - 1 )x + 1

= x2020 + x2020 - x2019 + x2019 - x2018 + ... + x2 - x + 1

= 2x2020 - x + 1 

= 2.20202020 - 2020 + 1 

= 2.20202020 - 2019 ( chắc đề sai (: )

NV
7 tháng 1

Áp dụng BĐT trị tuyệt đối:

\(M=\left|x-2019\right|+\left|2021-x\right|+2020\left|x-2020\right|\)

\(M\ge\left|x-2019+2021-x\right|+2020\left|x-2020\right|=2+2020\left|x-2020\right|\ge2\)

\(\Rightarrow M_{min}=2\) khi \(\left\{{}\begin{matrix}\left(x-2019\right)\left(2021-x\right)\ge0\\\left|x-2020\right|=0\end{matrix}\right.\) \(\Rightarrow x=2020\)

21 tháng 8 2020

làm nốt câu này rồi đi ngủ 

\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)

Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN 

Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)

Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được : 

\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)

Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)

Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)

Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)

x=2020 nên x+1=2021

\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)

\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)

=x-2020=0