K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Xét biểu thức \(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\) a) Tìm điều kiện của a và b để A có nghĩa. Rút gọn A. b) Cho giá trị của biểu thức A sau khi đã rút gọn bằng \(\frac{b+10}{b-10}\left(b\ne10\right)\). Chứng minh rằng \(\frac{a}{b}=\frac{9}{10}\) Câu 2: Rút gọn a)...
Đọc tiếp

Câu 1: Xét biểu thức

\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)

a) Tìm điều kiện của a và b để A có nghĩa. Rút gọn A.

b) Cho giá trị của biểu thức A sau khi đã rút gọn bằng \(\frac{b+10}{b-10}\left(b\ne10\right)\). Chứng minh rằng \(\frac{a}{b}=\frac{9}{10}\)

Câu 2: Rút gọn

a) \(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

Câu 3: Giải phương trình và hệ phương trình sau

a) (x - 2)2 - (x + 3)2 = 2(x - 5)

b) \(\left\{{}\begin{matrix}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{matrix}\right.\)

Câu 4: Cho nửa đường tròn (O) đường kính AB = 2R. Kẻ hai tiếp tuyến Ax và By của mỗi đường tròn (O) và tiếp tuyến thứ ba tiếp xúc với (O) tại điểm M và cắt Ax tại D, cắt By tại E.

a) CM: ΔDOE là tam giác vuông.

b) CM: AD.BE = R2.

c) Xác định vị trí của M trên nửa đường tròn (O) sao cho diện tích ΔDOE đạt giá trị nhỏ nhất.

Câu 5: Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì: n là bội số của 24.

Câu 6: Chứng minh rằng với mọi số thực a, b, c ta có các bất đẳng thức:

a) a4 + b4 ≥ a3b + ab3.

b) a2 + b2 +c2 ≥ ab + bc + ca.

Help me!!!

Thanks trc

5
NV
11 tháng 8 2020

1. ĐKXĐ: \(\left\{{}\begin{matrix}a;b\ge0\\a\ne9\end{matrix}\right.\)

\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{a}\left(\sqrt{b}+2\right)-3\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)}\)

\(=\frac{2\sqrt{a}+3\sqrt{b}}{\left(\sqrt{a}-3\right)\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{\left(\sqrt{a}+3\right)\left(2\sqrt{a}+3\sqrt{b}\right)+\left(\sqrt{ab}-6\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)

\(=\frac{2a+9\sqrt{b}+a\sqrt{b}+18}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{a\left(\sqrt{b}+2\right)+9\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}\)

\(=\frac{\left(a+9\right)\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}=\frac{a+9}{a-9}\)

b .

\(\frac{a+9}{a-9}=\frac{b+10}{b-10}\Leftrightarrow\frac{a-9+18}{a-9}=\frac{b-10+20}{b-10}\)

\(\Leftrightarrow1+\frac{18}{a-9}=1+\frac{20}{b-10}\Leftrightarrow\frac{18}{a-9}=\frac{20}{b-10}\)

\(\Leftrightarrow18\left(b-10\right)=20\left(a-9\right)\Leftrightarrow18b=20a\Leftrightarrow\frac{a}{b}=\frac{9}{10}\)

NV
11 tháng 8 2020

3.

\(x^2-4x+4-\left(x^2+6x+9\right)=2x-10\)

\(\Leftrightarrow-10x-5=2x-10\)

\(\Leftrightarrow12x=5\)

b. \(\Leftrightarrow\left\{{}\begin{matrix}17\left(x-y\right)+7\left(2x+y\right)=833\\19\left(4x+y\right)+5\left(y-7\right)=1425\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}31x-10y=833\\76x+24y=1460\end{matrix}\right.\)

Bấm máy

28 tháng 7 2023

A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)

\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)

\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=17\)

Vậy, x=17

 

A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)

=>5/2*căn x-1-căn x-1=6

=>3/2*căn x-1=6

=>căn x-1=4

=>x-1=16

=>x=17

B:

a: ĐKXĐ: x>=0; x<>1

b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)

=căn x-1+x-căn x+1

=x

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-2}{\sqrt{5}}=\dfrac{5-2\sqrt{5}}{5}\)

b: Để \(A< \dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow2\sqrt{x}-2-\sqrt{x}-1< 0\)

\(\Leftrightarrow x< 9\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0