K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y

<=> x(x+1)=y2(y+1)2+2y(y+1)

<=> x2+x+1=(y2+y+1)2 (1)

nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0

nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)\(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)

ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

nếu x<-1 thì từ (x+1)2<x2+x+1<x2

=> (1) không có nghiệm nguyên x<-1

tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

NV
29 tháng 7 2021

a.

\(\left\{{}\begin{matrix}x^4+y^4=34\\y=2-x\end{matrix}\right.\)

\(\Rightarrow x^4+\left(x-2\right)^4=34\)

Đặt \(x-1=t\)

\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=34\)

\(\Leftrightarrow t^4+6t^2-16=0\Rightarrow\left[{}\begin{matrix}t^2=2\\t^2=-8\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{2}\Rightarrow x=\sqrt{2}+1\Rightarrow y=1-\sqrt{2}\\t=-\sqrt{2}\Rightarrow x=1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\end{matrix}\right.\)

NV
29 tháng 7 2021

b.

\(\left\{{}\begin{matrix}xy^2-x^2y+6x-y^2-y-6=0\\x^2y-xy^2+6y-x^2-x-6=0\end{matrix}\right.\) (1)

Lần lượt cộng 2 vế và trừ 2 vế ta được:

\(\left\{{}\begin{matrix}-x^2-y^2+5x+5y-12=0\\2xy\left(y-x\right)+7\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-5\left(x+y\right)+12=0\\\left(y-x\right)\left(2xy-x-y-7\right)=0\end{matrix}\right.\)

Th1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)

\(\Rightarrow2x^2-10x+12=0\Rightarrow...\)

TH2: \(\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\\left(x+y\right)^2-2xy-5\left(x+y\right)+12=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2v-u-7=0\\u^2-2v-5u+12=0\end{matrix}\right.\)

\(\Rightarrow u^2-6u+5=0\)

\(\Leftrightarrow...\)

13 tháng 5 2019
😴😴😴😴😴😴😴
13 tháng 5 2019

Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được

\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)

Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc

\(2y^2+x^2y+x+3x^2-3xy=0\)

\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)

Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x

Ta có \(\Delta=-8y^3-15y^2-6y+1\)

Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)

mà y nguyên dương => y thuộc rỗng

=> Pt đã cho ko có nghiệm nguyên dương

30 tháng 4

Dùng định lý kẹp nhé

có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0

<=> x3 + 2x2 + 3x + 1 > x3 (1)

có x2 >= 0

<=> x+ 3x2 + 3x + 1 >= x3 + 2x2 + 3x + 1 (2)

Từ (1) và (2) => x3 + 2x2 + 3x + 1 = x+ 3x2 + 3x + 1

<=> x = 0

Thay vào biểu thức được y = -3

Vậy nghiệm nguyên của phương trình là (x;y) = (0;-3)

30 tháng 4

Cái phần "

có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0

<=> x3 + 2x2 + 3x + 1 > x3 (1)

" bị sai

đổi thành 5x2+2>0 <=> x3 + 2x2 + 3x + 1 > (x-1)3

thử thêm với trường hợp x3 + 2x2 + 3x + 1 = x3 được x =  -1 => y = -1

Vậy nghiêm nguyên của phương trình là (x;y) = (0;-3) ; (-1;-1)

a) Thay m=2 vào hệ phương trình, ta được: 

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)

Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)

 

NV
30 tháng 7 2021

Đây chắc chắn là 1 hệ pt không giải được

Lần lượt lấy (trên + dưới) và lấy (dưới - trên) được 1 hệ mới, sau đó chia vế cho vế và đặt \(\dfrac{x}{y}=t\) sẽ đưa về 1 pt không thể phân tích thành nhân tử, đồng nghĩa không thể giải hệ đã cho

31 tháng 7 2021

bài ni đúng đề thầy ạ !

nghiệm của hệ pt là :\(\left(x,y\right)=\left\{\dfrac{1+\sqrt[5]{3}}{2},\dfrac{\sqrt[5]{3}-1}{2}\right\}\)

NV
30 tháng 7 2021

a.

Với \(y=0\) không phải nghiệm

Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)

\(\Rightarrow3x+2=2x\left(x+y\right)+y\)

\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)

\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)

Thế vào pt đầu ...

Câu b chắc chắn đề sai