K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

\(G< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)

\(G< \frac{1-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{200-199}{199.200}\)

\(G< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(G< 1-\frac{1}{200}< 1\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:

Ta có:

\(\text{VT}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\text{VP}\)

Ta có đpcm.

6 tháng 5 2016

Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

Chúc bạn học tốt!hihi

6 tháng 5 2016

Tks bạn nhé Nguyễn Thế Bảo

16 tháng 4 2020

Bạn ơi, nói ốt cho mình với

15 tháng 4 2020

Kẻ các đ/phân giác AD,BE cắt nhau tại I

Ta có: \(\widehat{A}=2\widehat{B}=2\widehat{BAD}\Rightarrow\widehat{B}=\widehat{BAD}\)

\(\Rightarrow\Delta\) BAD cân tại D

\(\Rightarrow BD=AD\)

Hoàn toàn tương tự, ta cũng có: BE=CE

Ta có: \(\frac{AB}{BC}=\frac{AE}{CE}=\frac{AE}{BE}\left(1\right)\)( vì BE là phân giác)

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{AD}{CD}\left(2\right)\)( vì AD là phân giác)

Cộng (1) và (2) có:

\(\frac{AB}{BC}+\frac{AB}{AC}\)

\(=\frac{AE}{BE}+\frac{AD}{CD}\)

Xét \(\Delta AIB\)\(\Delta ADC\)

\(\widehat{BAD}=\widehat{DAC}\) ( AD là phân giác)

\(\widehat{ABE}=\widehat{ACB}=\frac{1}{2}\widehat{B}\)

Suy ra: \(\Delta AIB\sim\Delta ADC\left(g-g\right)\)

\(\Rightarrow\frac{AD}{CD}=\frac{AI}{BI}\left(3\right)\)

Lại có AD là phân giác nên:

21 tháng 9 2020

a)\(G=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)

\(=\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)

\(=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)

\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)

\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)

\(=\frac{2}{x+\sqrt{x}+1}\)

b) \(x+\sqrt{x}+1>0\Rightarrow G>0\)

\(x+\sqrt{x}+1>0+0+1=1\)

\(\Rightarrow\frac{2}{x+\sqrt{x}+1}< \frac{2}{1}=2\Rightarrow G< 2\)

\(\Rightarrow O< G< 2\)

12 tháng 6 2018

Bài 1 : 

a.Ta có 1 - 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200 
=(1+1/2+1/3+1/4+.....+1/199+1/200) -2(1/2+1/4+1/6+......+1/200) 
=(1+1/2+1/3+1/4+.....+1/199+1/200) -(1+1/2+1/3+.....+1/100) 
=1/101+1/102+....+1/199+1/200

b.Tổng quát bạn tự làm nhé

Bài 1 :

Ta giải bài toán tổng quát :chứng minh rằng : với n là số tự nhiên lớn hơn 1 , ta luô có :

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}\)\(-\frac{1}{2n}\)

\(=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)

Thật vậy ,kí hiệu \(S2n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n}\)thì ta có :

\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2n}=S2n-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n}\right)\)

\(=S2n-\left(1+\frac{1}{2}+...+\frac{1}{n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+..+\frac{1}{2n}\)

Bài toán ở câu a chỉ là trường hợp riêng của bài toán trên với \(n=100\)

Bài 2 :

Đặt \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{15}\left(1\right)\)

\(T=1.3.5.7...15\)( Tích các số lẻ bé hơn hoặc bằng 15 )

Nhân 2 vế của ( 1 ) với 2^2 .T ta được :

\(S.2^2T=\frac{2^2T}{2}+\frac{2^2T}{3}+\frac{2^2T}{4}+...+\frac{2^2T}{15}\left(2\right)\)

Dễ thấy tất cả các số hạng ở vế phải của ( 2) ,trừ số hặng \(\frac{2^2T}{2^3}\)đều là số tự nhiên ,suy ra vế phải có tổng không phải là số tự nhiên .Do đó S không phải là số tự nhiên

Chúc bạn học tốt ( -_- )

28 tháng 7 2016

\(\frac{1}{25}\)<1

19 tháng 1 2019

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)

20 tháng 1 2019

bài tớ sai rồi -_-' chưa lại hộ

\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)