Tìm giá trị dương nhỏ nhất
\(\frac{1}{-x^2+8x-7}\)
(mk ra kết quả là 1/9 nhưng ko biết cách trình bày chính xác . Mong mọi người giúp đỡ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab
Số chia 5 dư 3 thì chữ số tận cùng là 3 hoặc 8
Số chia 2 dư 1 thì chữ số tận cùng là các số lẻ
=> Số chia 5 dư 3 và chia 2 dư 1 có chữ số tận cùng là 3
=> ab = a3 chia hết cho 9 => a+3 chia hết cho 9 => a=6
Vậy số cần tìm là 63
Gọi số cần tìm là a
Ta có : a : 5 dư 3
=> a - 3 \(⋮\) 5(đk : a > 2)
Lại có a : 2 dư 1
=> a - 3 \(⋮\)2 (đk : a > 3)
=> a - 3 : 9 dư 6
Vì a - 3 \(⋮\)5 và a - 3 \(⋮\)2
=> a - 3 \(\in\)BC(5 ; 2)
mà a nhỏ nhất => a - 3 nhỏ nhất
=> a - 3 = BCNN(5 ; 2)
Lại có \(BC\left(5;2\right)=B\left(10\right)\)
=> a - 3 \(\in\left\{0;10;20;30;40;50;60;...\right\}\)
=> \(a\in\left\{3;13;23;33;43;53;63;...\right\}\)
mà a \(⋮\)9
=> a = 63 (Vì a nhỏ nhất)
Vậy số cần tìm là 63
Từ đề bài suy ra : x^2+ 12x+36=4(36-x^2)=144-4x^2
Suy ra : 5x^2+12x-108=0
Bây giờ phương trình đã cho trở thành phương trình bậc 2.
Bạn chỉ cần dùng denta là xong.
=> ĐKXĐ : \(\hept{\begin{cases}\sqrt{6^2-x^2}\ge0\\\sqrt{6^2-x^2}-3\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}36-x^2\ge0\\36-x^2\ne9\end{cases}}\Leftrightarrow\hept{\begin{cases}-6\le x\le6\\x\ne3\sqrt{3};x\ne-3\sqrt{3}\end{cases}}\)
PT <=> \(x=2.\left(\sqrt{6^2-x^2}-3\right)\)
\(\Leftrightarrow x=2\sqrt{36-x^2}-6\)
\(\Leftrightarrow\frac{x+6}{2}=\sqrt{36-x^2}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x+6}{2}\ge0\\\left(\frac{x+6}{2}\right)^2=36-x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-6\left(lđ\right)\\\frac{x^2+12x+36}{4}=36-x^2\end{cases}}\)
x = -6 luôn đúng ở đây là do ở ĐKXĐ đã có 6 >= x >= -6
pt \(\Leftrightarrow x^2+12x+36=144-4x^2\)
\(\Leftrightarrow5x^2+12x-108=0\)
\(\Leftrightarrow5x^2+30x-18x-108=0\)
\(\Leftrightarrow5x\left(x+6\right)-18\left(x+6\right)=0\)
\(\Leftrightarrow\left(5x-18\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-18=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3,6\left(n\right)\\x=-6\left(n\right)\end{cases}}}\)
Vậy.....
Baif1:
Vì biểu thức trên cần lớn hơn 1,nên ta có bất phương trình :
\(\frac{x}{x-6}-\frac{6}{x-9}>1\)
\(\Leftrightarrow\frac{x^2-15x+36}{\left(x-6\right)\left(x-9\right)}\ge\frac{x^2-15x+54}{\left(x-6\right)\left(x-9\right)}\)
\(\Leftrightarrow\frac{x^2-15x+36-\left(x^2-15x+54\right)}{\left(x-6\right)\left(x-9\right)}>0\)
\(\Leftrightarrow\frac{-18}{\left(x-6\right)\left(x-9\right)}>0\)
Vì \(-18< 0\Rightarrow\left(x-6\right)\left(x-9\right)< 0\)
Xét hai trường hợp:
TH1:\(\orbr{\begin{cases}x-6>0\\x-9< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>6\\x< 9\end{cases}}}\)
\(\Leftrightarrow6< x< 9\)(tm)(1)
TH2:\(\orbr{\begin{cases}x-6< 0\\x-9>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 6\\x>9\end{cases}\Leftrightarrow}9< x< 6\left(ktm\right)}\)(2)
Từ (1) và (2) \(\Rightarrow6< x< 9\) lại có \(x\in Z\Rightarrow x\in\left\{7;8\right\}\)
Bài 2:
Ta có:\(2\left(n+2\right)^2+n\left(1-n\right)\ge\left(n-5\right)\left(n+5\right)\)
\(\Leftrightarrow2n^2+8n+8+n-n^2\ge n^2-25\)
\(\Leftrightarrow2n^2-n^2-n^2+8n+n\ge-25-8\)
\(\Leftrightarrow9n\ge-33\)
\(\Leftrightarrow n\ge\frac{-33}{9}\)(1)
Để n không âm thỏa mãn 7-3n là số nguyên,thì \(3n\in Z\Rightarrow n\inℤ+\)(2)
Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;2;............\right\}\)
Đề bài 2 có sai không vậy chứ nó có nhiều sỗ quá bạn ạ
c hơn a số phần là
10 - 2 = 8 [phần]
suy ra 8 phần = 32
a là
32:8 nhân 2 =8
b là :
32:8 nhân 9 =36
c là
32 : 8 nhân 10 = 40
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
Ta có : \(-x^2+8x-7=-\left(x^2-8x+16\right)+9\)
\(=-\left(x-4\right)^2+9\le9< 0\)
\(\Leftrightarrow\frac{1}{-\left(x-4\right)^2+9}\ge\frac{1}{9}\)
Dấu "=" xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)