Tìm giá trị lớn nhất của biểu thức sau: B = -2x^2 -3x +5
XIN CÁC BẠN TRẢ LỜI CÀNG NHANH CÀNG TỐT GIÚP MÌNH NHÉ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
999 + 3 + 98 + 998 + 3 + 9
= ( 999 + 1 ) + ( 98 + 2 ) + ( 998 + 2 ) + ( 99 + 1 ) + ( 9 + 1 )
= 1000 + 100 + 1000 + 100 + 10
= 2110
636 - 576 - 99 + 367
= ( 636 + 364 ) + 3 - ( 575 + 100 )
= 900 - ( 675 - 3 )
= 228
5034 - 997 - 998 - 999
= 5034 + 6 - ( 1000 + 1000 + 1000 )
= 5040 - 3000
= 2040
Mỏi tay quá k giúp mình nhé !!!!!!
1.Tìm giá trị lớn nhất của:
A = 0,5 - |x - 3,5|
Để A đạt GTLN thì |x-3,5| đạt GTNN
Mà |x-3,5| >/ 0
=> |x-3,5| = 0
Vậy GTLN của A là 0,5 - |x-3,5| =0,5 -0 =0,5.
B = - |1,4 - x| - 2
Để B đạt GTLN thì -|1,4 -x| đạt GTLN
mà -|1,4 -x| \< 0
=> -|1,4 -x| =0
Vậy GTLN của B là -|1,4-x| -2 = 0-2 =-2
2.Tìm giá trị nhỏ nhất của:
C = 1,7 + |3,4 - x|
Để C đạt GTNN thì |3,4 -x| đạt GTNN
mà |3,4 -x| >/ 0
=> |3,4 -x| = 0
Vậy GTNN của C là 1,7 +|3,4-x|= 1,7 +0 =1,7
D = |x + 2,8| - 3,5
Để D đạt GTNN thì |x+2,8| đạt GTNN
mà |x+2,8| >/ 0
=> |x+2,8| =0
Vậy GTNN của D là |x+2,8| -3,5 = 0- 3,5 = -3,5
1.
A = 0,5 - / x - 3,5 /
= 0,5 - / x - 3,5 / \(\ge\)0,5 do trị tuyệt đối luôn dương
Max A =0,5 khi x - 3,5 = 0 => x = 3,5
B = Tương tự z thôi
Max B = -2 khi 1,4 - x = 0 => x = 1,4
2.
C tương tụ
Min C = 1,7 khi 3,4 - x = 0 => x= 3,4
D cũng z
Min D = -3,5 khi x + 2,8 = 0 => x= -2,8
Ủng hộ nha
Thanks
Nhận xét : P > 0
P đạt giá trị nhỏ nhất <=> \(P^2\) đạt giá trị nhỏ nhất.
Ta có : \(P^2=\frac{\left(a^2+b^2+1\right)^2}{\left(a-b\right)^2}=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{\left(a^2+b^2\right)-2ab}\)
\(=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{a^2+b^2-8}\)
Đặt \(t=a^2+b^2,P^2=y\) \(\Rightarrow y=\frac{t^2+2t+1}{t-8}\)
\(\Rightarrow y\left(t-8\right)=t^2+2t+1\Leftrightarrow t^2+t\left(2-y\right)+\left(1+8y\right)=0\)
Để pt có nghiệm thì \(\Delta=\left(2-y\right)^2-4\left(1+8y\right)=y^2-36y\ge0\)
\(\Leftrightarrow y\left(y-36\right)\ge0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}y\ge36\left(\text{nhận}\right)\\y\le0\left(\text{loại}\right)\end{array}\right.\)
Suy ra \(y=P^2\ge36\Rightarrow P\ge6\).
Dấu "=" xảy ra khi \(\frac{\left(t+1\right)^2}{t-8}=36\Leftrightarrow t=17\)
\(\Rightarrow\begin{cases}ab=4\\a^2+b^2=17\end{cases}\) \(\Leftrightarrow\begin{cases}a=4\\b=1\end{cases}\) (vì a > b)
Vậy P đạt giá trị nhỏ nhất bằng 6 khi (a;b) = (4;1)
\(B=-2x^2-3x+4=-2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{41}{8}\)
\(\Rightarrow B=-2\left(x+\frac{3}{4}\right)^2+\frac{41}{8}\le\frac{41}{8}\)
\("="\Leftrightarrow x=-\frac{3}{4}\)
B = -2x2 - 3x + 5
B = -2( x2 + 3/2x + 9/16 ) + 49/8
B = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MaxB = 49/8 <=> x = -3/4