Tìm số tự nhiên nhỏ nhất khi chia cho 9,10 và 12 được số dư lần lượt là 7, 8 , và 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đó là a :
a - 2 chia hết cho 8
a - 2 chia hết cho 9
a - 2 chia hết cho 12
a thuộc N*; a thuộc BCNN(8,9,2)
Ta có :
8 = 23
9 = 32
12 = 22 . 3
BCNN(8,9,12) = 23 . 3 2= 72
=> a - 2 tthuộc {72}
=> a thuộc {70}
Vậy số tự nhiên nhỏ nhất khi chia cho 8, 9 và 12 được số dư lần lượt là 6,7 và 10 là : 70
Gọi số phải tìm là a, a ∈ N
Vì a chia cho 8,12,15 được số dư lần lượt là 6,10,13 nên (a+2) chia hết cho 8,12,15.
Suy ra (a+2) ∈ BC(8,12,15)
Ta có: 8 = 2 3 ; 12 = 2 2 . 3 ; 15 = 3.5
=> BCNN(8,12,15) = 2 3 .3.5 = 120
Suy ra (a+2) ∈ BC(8,12,15) = B(120)
Do đó, a+2 = 120k => a = 120 – 2 (k ∈ N*)
Lần lượt cho k = 1,2,3,… đến k = 5 thì được a = 598 ⋮ 23
Vậy số phải tìm là 598
9
vuhohbriyhwifgfsdccccccccccccccccccccccccccccccccccccccccccc
Gọi số tự nhiên cần tìm là n \(n\in N\)
Theo đề ta có
\(\hept{\begin{cases}n\div9dư5\\n\div10dư6\\n\div12dư8\end{cases}}\Rightarrow\hept{\begin{cases}n+4⋮9\\n+4⋮10\\n+4⋮12\end{cases}}\)
=>n+4 thuộc bội chung (9,10,12) mà n nhỏ nhất
=>n+4 = bội chung nhỏ nhất (9,10,12)
=>n+4=180
=>n=180-4
=>n=176
Vậy số tn phải tìm là 176
Hok tốt !!!!!!!!!!!!!
Gọi số tự nhiên cần tìm là a
Ta có : \(\hept{\begin{cases}a:9\text{ dư 8}\\a:10\text{ dư 9}\\a:12\text{ dư 11}\end{cases}\Rightarrow\hept{\begin{cases}\left(a+1\right)⋮9\\\left(a+1\right)⋮10\\\left(a+1\right)⋮12\end{cases}}\Rightarrow a+1\in BC\left(9;10;12\right)}\)
Mà a nhỏ nhất
=> \(a+1\in BCNN\left(9;10;12\right)\)
Lại có : 9 = 32
10 = 2.5
12 = 22.3
=> a + 1 = BCNN(9;10;12) = 32.22.5 = 180
=> a + 1 = 180
=> a = 179
Vậy số cần tìm là 179
Tìm số tự nhiên nhỏ nhất chia cho 8, 10 , 15, 20 có só dư lần lượt là 5, 7, 12, 17 và chia hết cho 41
Gọi a là số tự nhiên nhỏ nhất cần tìm :
Theo bài ra, ta có:
a \(⋮8\)(dư 5 )
\(a⋮10\left(dư7\right)\)
\(a⋮15\left(dư12\right)\)
\(a⋮20\left(dư17\right)\)
Ta tìm BCNN ( \(8;10;15;20\))
8=23
10=2.5
15=3.5
20=22.5
Nên BCNN là : 120
Lại có: \(a⋮41\)nên \(a=41.k\left(k\in N\right)\)
\(\Rightarrow n+3=41k+3\)
\(\Rightarrow41k+3⋮120\)
\(\Rightarrow41k⋮120-3\)
\(\Rightarrow41k⋮117\)
\(\Rightarrow a⋮117\)
Theo bài thì ta có:
\(a⋮41vs117\)
\(\Rightarrow a\in BC\left(41vs117\right)\)
Vì a là \(ℕ\)nhỏ nhất thuộc BC của 41 và 117
\(\Rightarrow a=BCNN\left(41;117\right)\)
Mà 41 và 117 là hai số nguyên tố trùng nhau nên BCNN ( 41;117 ) = 4797
Vậy số cần tìm là 4797
Gọi số cần tìm là a ; (a > 0)
Ta có : \(\hept{\begin{cases}a:9\text{ dư 7}\\a:10\text{ dư 8}\\a:12\text{ dư 10}\end{cases}}\Rightarrow\hept{\begin{cases}a+2⋮9\\a+2⋮10\\a+2⋮12\end{cases}}\Rightarrow a+2\in BC\left(9;10;12\right)\)
Mà a nhỏ nhất
=> \(a+2\in BCNN\left(9;10;12\right)\)
Ta có 9 = 32
10 = 2.5
12 = 22.3
=> BCNN(9;10;12) = 32 . 22,5 = 180
=> a + 2 = 180
=> a = 178