K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,Cho tam giác ABC vuông tại A có đường cao AH, trung tuyến AM. Qua H kẻ đường thẳng // AB cắt AC tại D, kẻ đường thẳng // AC vắt AB tại E . Chứng minh:a, AH=DEb,BAM vuông góc với DEc, tam giác ABC cần thêm điều kiện gì để AEHD là hình vuông a Cho AB=6,AC=8. Tính SAEMD2,Cho ABCD là hcn có O là giao điểm của 2 đường chéo.Trên OB lấy I.Gọi E là điểm đối xứng với A qua I.a,C/M OIEC là hình thangb, Gọi K là...
Đọc tiếp

1,Cho tam giác ABC vuông tại A có đường cao AH, trung tuyến AM. Qua H kẻ đường thẳng // AB cắt AC tại D, kẻ đường thẳng // AC vắt AB tại E . Chứng minh:

a, AH=DE

b,BAM vuông góc với DE

c, tam giác ABC cần thêm điều kiện gì để AEHD là hình vuông 

a Cho AB=6,AC=8. Tính SAEMD

2,Cho ABCD là hcn có O là giao điểm của 2 đường chéo.Trên OB lấy I.Gọi E là điểm đối xứng với A qua I.

a,C/M OIEC là hình thang

b, Gọi K là trung điểm của CE.C/M IK=OC

c, Đường thẳng IK cắt BC tại F và cắt DC tại H,C/M tam giác KHC cân

d, Tứ giác ABCD cần thêm điều kiện gì để OIKC là hcn

3, Cho tam giác ABC có góc A=90độ, AB<AC,trung tuyến AM.Vẽ tia Mx//AB cắt AC tại H.Trên tia Mx lấy điểm K sao cho MK=AB

a,C/M BM=AK

b,C/M M,K đx với nhau qua AC

c, Từ C vẽ đường thẳng vuông góc với AC cắt AM tại Q.C/M ACQB là hcn

 

0
14 tháng 5 2022

A B C E F I M

a/ Xét tg vuông ABC có 

BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)

b/ Xét tg vuông AEF và tg vuông AFM có

\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)

Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)

Xét tg MBE và tg MFC có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)

=> tg MBE đồng dạng với tg MFC (g.g.g)

c/ Xét tg vuông ABC và tg vuông AFE có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

=> tg ABC đông dạng với tg AFE

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

d/

 

a: ΔABC vuông tại A

mà AM là trung tuyến

nên AM=MB=MC

=>góc MBA=góc MAB

b: góc AEF=90 độ-góc EAM=90 độ-góc B

=>gócAEF=góc ACB

c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có

góc AEF=góc ACB

=>ΔAFE đồng dạng với ΔABC

=>AF/AB=AE/AC

=>AF*AC=AB*AE

14 tháng 12 2021

Cm: a) Ta có: BA ⊥⊥AC (gt)

                        HD // AB (gt)

=> HD ⊥⊥AC => ˆHDA=900HDA^=900

Ta lại có: AC ⊥⊥AB (gt)

   HE // AC (gt)

=> HE ⊥⊥AB => ˆHEA=900HEA^=900

Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^

Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)

  ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)

=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2) 
Từ (1) và (2) => ˆODA=ˆBODA^=B^

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)

=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)

hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900

=> AM⊥DEAM⊥DE(Đpcm)

c) (thiếu đề)

a) Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về đường trung bình của tam giác)

mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM

Xét ΔMBA có MA=MB(cmt)

nên ΔMBA cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MAB}=\widehat{MBA}\)(hai góc ở đáy)

\(\Leftrightarrow\widehat{MAB}=\widehat{HBA}\)(1)

Ta có: ΔAHB vuông tại H(AH\(\perp\)BC tại H)

nên \(\widehat{HBA}+\widehat{HAB}=90^0\)(hai góc nhọn phụ nhau)(2)

Ta có: \(\widehat{BAM}+\widehat{BAD}=\widehat{MAD}\)(tia AB nằm giữa hai tia AM,AD)

hay \(\widehat{BAM}+\widehat{BAD}=90^0\)(3)

Từ (1), (2) và (3) suy ra \(\widehat{BAH}=\widehat{BAD}\)

mà tia AB nằm giữa hai tia AH,AD

nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)

14 tháng 5 2022

loading...loading...

a) Ta có: ΔABH vuông tại H(AH⊥BC)

nên \(\widehat{HAB}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{HAB}+\widehat{ABM}=90^0\)(1)

Ta có: tia AB nằm giữa hai tia AD,AM(gt)

nên \(\widehat{DAB}+\widehat{MAB}=\widehat{MAD}\)

hay \(\widehat{DAB}+\widehat{MAB}=90^0\)(2)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM

Xét ΔABM có AM=BM(cmt)

nên ΔABM cân tại M(Định nghĩa tam giác cân)

\(\widehat{MBA}=\widehat{MAB}\)(hai góc ở đáy)(3)

Từ (1), (2) và (3) suy ra \(\widehat{HAB}=\widehat{DAB}\)

mà tia AB nằm giữa hai tia AH,AD

nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)