Tìm các số nguyên x,y thỏa mãn
a) xy + 2x + 2y = 3
b) 5/x + y/4 = 1/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
Tới đây đơn giản rồi tự làm tiếp nhé
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
chúc bạn học tốt
Tới đây đơn giản rồi tự làm tiếp n
a) \(2x^2+2x+1=0\)
\(\Rightarrow2x^2+2x=-1\)
\(\Rightarrow2x\left(x+1\right)=-1\)
⇒ Pt vô nghiệm
a: \(2x^2+2x+1=0\)
\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)
Vì Δ<0 nên phương trình vô nghiệm
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
a; xy+2x + 2y =3
\(\Leftrightarrow x\left(y +2\right)+2y=3\)
\(\Leftrightarrow x\left(y+2\right)+2\left(y+2\right)=7\)
\(\Leftrightarrow\left(y+2\right).\left(x+2\right)=7\)
Do x;y\(\in\) Z nên y+2 ; x+2 \(\in\)Z
\(\Rightarrow\hept{\begin{cases}y+2=1\\x+2=7\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=5\end{cases}}}\)
\(\hept{\begin{cases}y+2=7\\x+2=1\end{cases}\Rightarrow\hept{\begin{cases}y=5\\x=-1\end{cases}}}\)
\(\hept{\begin{cases}y+2=-1\\x+2=-7\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=-9\end{cases}}}\)
\(\hept{\begin{cases}y+2=-7\\x+2=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-9\\x=-3\end{cases}}}\)
Vậy (x;y)\(\in\)(5;-1) ; (-1;5) ; (-9;-3 ) ; (-3;-9)
a) xy + 2x + 2y = 3
=> x(y + 2) + 2y = 3
=> x(y + 2) + 2y + 4 = 7
=> x(y + 2) + 2(y + 2) = 7
=> (x + 2)(y + 2) = 7
Ta có 7 = 1.7 = (-1).(-7)
Lập bảng xét các trường hợp
Vậy các cặp (x;y) thỏa mãn là (-1;5) (5;-1) ; (-3; -9) ; (-9;-3)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 8(20 + xy) = 4x
=> 2(20 + xy) = x
=> 40 + 2xy = x
=> 2xy + 40 - x = 0
=> 2xy - x = -40
=> x(2y - 1) = -40
Vì y nguyên => 2y - 1 nguyên
mà 2y - 1 luôn không chia hết cho 2 với mọi y nguyên (1)
lại có x(2y - 1) = - 40
=> 2y - 1 \(\in\)Ư(-40) (2)
Từ (1) (2) => \(2y-1\in\left\{5;-5;1;-1\right\}\)
Khi 2y - 1 = 5 => x = -8
=> y = 3 ; x = -8
Khi 2y - 1 = -5 => x = 8
=> y = -2 ; x = 8
Khi 2y - 1 = 1 => x = -40
=> y = 1 ; x = -40
Khi 2y - 1 = - 1 => x = 40
=> y = 0 ; x = 40
Vậy các cặp (x;y) thỏa mãn là ( -8 ; 3) ; (8 ; -2) ; (-40 ; 1) ; (40 ; 0)