K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

a)

Liên tiếp áp dụng HTL, ta có:   \(\hept{\begin{cases}AB.AK=AH^2\\HB.HC=AH^2\end{cases}}\)   

=>   \(AB.AK=HB.HC\)

=> TA CÓ ĐPCM.

b) LIÊN TIẾP ÁP DỤNG HTL TA ĐƯỢC: 

\(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.CB\end{cases}}\)

CÓ:   \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.CB}=\frac{HB}{HC}\)

VẬY TA CÓ ĐPCM.

16 tháng 6 2016

a) ta có theo công thức lượng giác : 

xét trong tam giác vuông AHB ta có AK.AB=AH2

mặt khác trong tam giác vuông ABC có : AH2=HC.HB 

=> AK.AB=HB.HC (=AH2)

 

16 tháng 6 2016

a) tam giác AKH vuông tại K và tam giác AHB vuông tại H có

góc KAH =góc HAB 

=> tam giác AKH đồng dạng tam giác AHB (g-g)

=> AK/AH=AH/AB

=> AH^2=AK.AB (1)

tam giác ABC vuông tại A=> AH^2=BH.CH (hệ thức lượng tam giác vuông )

(1),(2)=> AK.AB=BH.CH (đpcm)

b) đề sai bn nhé phải là cm AB^2/AC^2=HB/HC 

ta có AB^2=BH.BC (hệ thức lượng tam giác vuông )

ta có AC^2=HC.BC (hệ thức lượng tam giác vuông )

=> \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\left(đpcm\right)\)

22 tháng 5 2021

a) Cm tamgiac ABC đồng dạng với tamgiac HBA(g.g)

=> AB/BC = BH/AB hay AB^2 = BH.HC

và cm  tamgiac ABC đồng dạng với tamgiac HAC(g.g)

=> AC/BC = HC/AC hay AC^2 = CH.BH

22 tháng 5 2021

a. Xét tg vuông ABC và  tg vuông HBA có:

\(\widehat{ABH}\)chung

\(\Rightarrow\Delta ABC~\Delta HBA\)

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}\)

\(\Rightarrow AB^2=HB.BC\)

Cmtt:\(\Delta ABC~HAC\)

\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow AC^2=BC.HC\)

b. lát làm tiếp nhá

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vơi ΔABC

=>ΔHBA đồng dạng với ΔHAC

b: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

c: AH=căn 9*16=12cm

AB=căn 9*25=15cm

=>AC=20cm

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow AB^2=HB\cdot BC\)(đpcm)

b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔAHB\(\sim\)ΔCHA(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow AH^2=HB\cdot HC\)(đpcm)

a: Xét ΔABC vuông tại A có AH là đường cao

nên AC^2=CH*CB

b: \(BC=25+36=61\left(cm\right)\)

\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)

=>A\(C=6\sqrt{61}\left(cm\right)\)

a: Xet ΔABC vuông tại A co AH là đường cao

nên AH^2=HB*HC

b: BC=3,6+6,4=10cm

\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)

=>AC=8cm