phân tích đa thức sau thành nhân tử ( phối hợp các phương pháp ):
- \(\text{xy(a^2+2b^2)-ab(2x^2+y^2)}\)
- \(\text{xy(a^2+2b^2)+ab(2x^2+y^2)}\)
Mong các bạn giúp mình với ạ.
Cảm ơn các bạn rất nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: \(3xy\left(a^2+b^2\right)+ab\left(x^2-9y^2\right)\)
\(=3xya^2+3xyb^2+abx^2+ab9y^2\)
\(=\left(3xya^2+abx^2\right)+\left(3xyb^2+ab9y^2\right)\)
\(=ax\left(3ya+bx\right)+3by\left(xb+3ya\right)\)
\(=\left(3ya+xb\right)\left(3yb+ax\right)\)
2.Check lại đề hộ mình nha:((
Câu 2 nên sủa lại đề nha
2. xy(a2+2b2)+ab(2x2+y2)
=xya2+xy2b2+ab2x2+aby2
=(xya2+aby2)+(xy2b2+ab2x2)
=ay(ax+by)+2bx(by+ax)
=(ax+by(ay+2bx)
h) \(y\left(y-x\right)^3-x\left(x-y\right)^2+xy\left(x-y\right)=y\left(y-x\right)^3-x\left(y-x\right)^2-xy\left(y-x\right)=\left(y-x\right)\left[y\left(y-x\right)^2-x-xy\right]=\left(y-x\right)\left[y\left(y^2-2xy+x^2\right)-x-xy\right]=\left(y-x\right)\left(y^3-2xy^2+x^2y-x-xy\right)\)
i) \(10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(2b-a\right)^2=10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(a-2b\right)^2=\left(a-2b\right)^2\left(10x^2-x^2-2\right)=\left(a-2b\right)^2\left(9x^2-2\right)\)
x2+(2a+b)xy+2aby2
=x2+2axy+bxy+2aby2
=(x2+bxy)+(2axy+2aby2)
=x(x+by)+2ay(x+by)
=(x+by)(x+2ay)
g: \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(5x+3\right)\)
f: \(4x^2\left(x+1\right)+2x^2\left(x+1\right)\)
\(=6x^2\left(x+1\right)\)
f: \(4x^2\left(x+1\right)+2x^2\left(x+1\right)=6x^2\left(x+1\right)\)
g: \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(5x+3\right)\)
câu f có ( x+1) là nhân tử chung
câu g đổi dấu - thành + thì (y-x) sẽ thành (x-y)
Sửa lại đề ở câu 1: \(2ab\)chuyển thành \(2bx\)
1. \(2x^2+2b^2+2bx+2x+2b+2\)
\(=\left(x^2+2bx+b^2\right)+\left(x^2+2x+1\right)+\left(b^2+2b+1\right)\)
\(=\left(b+x\right)^2+\left(x+1\right)^2+\left(b+1\right)^2\)
2. \(4x^2+4x+10+6y+y^2\)
\(=\left(4x^2+4x+1\right)+\left(y^2+6y+9\right)\)
\(=\left(2x+1\right)^2+\left(y+3\right)^2\)
1. \(xy\left(a^2+2b^2\right)-ab\left(2x^2+y^2\right)\)
\(=xya^2+2xyb^2-2abx^2-aby^2\)
\(=xya^2-aby^2-2abx^2+2xyb^2\)
\(=ay\left(ax-by\right)-2bx\left(ax-by\right)\)
\(=\left(ay-2bx\right)\left(ax-by\right)\)
2. \(xy\left(a^2+2b^2\right)+ab\left(2x^2+y^2\right)\)
\(=xya^2+2xyb^2+2abx^2+aby^2\)
\(=xya^2+aby^2+2abx^2+2xyb^2\)
\(=ay\left(ax+by\right)+2bx\left(ax+by\right)\)
\(=\left(ay+2bx\right)\left(ax+by\right)\)