Tìm số bé nhất chia 3 dư 1 , chia 4 dư 2 , chia 5 dư 3 , chia 6 dư 4. có cách giải nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là a,
ta có :
+ a : 3 dư 1 ⇒ a + 2 ⋮ 3
+ a : 4 dư 2 ⇒ a + 2 ⋮ 4
+ a : 5 dư 3 ⇒ a + 2 ⋮ 5
+ a : 6 dư 4 ⇒ a + 2 ⋮ 6
+ a nhỏ nhất
⇒ a + 2 ∈ BCNN(3;4;5;6)
⇒ a + 2 = BCNN(3;4;5;6) = 22.3.5 = 60
⇒ a = 60 - 2 = 58
Vậy số tự nhiên nhỏ nhất cần tìm là 58
Hok tốt !!!!!!!! ^^
Bg
Gọi số cần tìm là x (x là số tự nhiên khác 0)
Theo đề bài: x - 1 chia hết cho 3 (viết tắt là chc) ; x - 2 chc 4;
x - 3 chc 5; x - 4 chc 6 và x nhỏ nhất
Ta có: x - 1 + 3 = x + 2 chc 3
x - 2 + 4 = x + 2 chc 4
x - 3 + 5 = x + 2 chc 5
x - 4 + 6 = x + 2 chc 6
=> x + 2 chc 3; 4; 5; 6
Số nhỏ nhất chia hết cho 6 là ?
6 chc 3 và 2 và 4 cũng chc 2 => Ta lấy số 4 và 3
=> Số nhỏ nhất chia hết cho 6 là: 5 × 4 × 3 = 60
=> x + 2 = 60
=> x = 60 - 2
=> x = 58
Vậy số cần tìm là 58
Gọi số đó là a =>a+1 chia hết cho 7;6;5;4;3;2 =>a+1 thuộc
BC( 7;6;5;4;3;2 ) nhưng mà a nhỏ nhất nên a+1= BCNN( 7;6;5;4;3;2)=420 mà a=420-1=>a=419
tick cho mk nha bạn
Gọi số đó là:a
Ta có:a:3(dư 1)
a:4(dư 2)
a:5(dư 3)
a:6(dư 4)
=>(a+2) chia hết cho 3,4,5,6
Mà a bé nhất nên a+2 bé nhất
=>a+2=BCNN(3,4,5,6)
Ta lại có:3=1.3
4=22
5=1.5
6=2.3
Vậy BCNN(3,4,5,6)=3.22.5=60
Nên a+2=60
=>a=58
dễ mà
a) Gọi số nhỏ nhất cần tìm là a
Do số cần tìm chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
⇒a−1⋮3;a−2⋮4;a−3⋮5;x−4⋮6⇒a−1⋮3;a−2⋮4;a−3⋮5;x−4⋮6
⇒a−1+3⋮3;a−2+4⋮4;a−3+5⋮3;a−4+6⋮6⇒a−1+3⋮3;a−2+4⋮4;a−3+5⋮3;a−4+6⋮6
⇒a+2⋮3;4;5;6⇒a+2⋮3;4;5;6
⇒a+2∈BC(3;4;5;6)⇒a+2∈BC(3;4;5;6)
Mà BCNN(3;4;5;6) = 60 ⇒a+2∈B(60)⇒a+2∈B(60)
Ta có: a + 2 chia hết cho 60; a chia hết cho 13
=> a + 2 + 180 chia hết cho 60; a + 182 chia hết cho 13
=> a + 182 chia hết cho 60; 13
⇒a+182∈BC(60;13)⇒a+182∈BC(60;13)
Mà (60;13)=1 => BCNN(60;13) = 780
⇒a+182∈B(780)⇒a+182∈B(780)
=> a = 780.k + 598 (k∈N)(k∈N)
Để a nhỏ nhất thì k nhỏ nhất => k = 0
=> a = 780.0 + 598 = 598
Vậy số nhỏ nhất cần tìm là 598
Gọi ab là số cần tìm. ( a khác 0 )
Vì ab chia cho 2 dư 1 nên a sẽ là số lẻ ( 1 )
Vì ab chia cho 3 dư 2 nên hàng đơn vị của a sẽ bằng 1, 4, 7 ( 2 )
Vì ab chia cho 4 dư 3 nên hàng đơn vị của a sẽ bằng 1, 7 ( 3 )
Vì ab chia cho 5 dư 4 nên hàng đơn vị của a sẽ bằng 1 ( 4 )
Từ ( 1), (2), (3), (4) ta có b = 1. Số a1
a1 chia cho 6 dư 5. Vậy a1 = 11
n = 4k2 + 3 => n +1 chia hết cho 4
n = 5k3 + 4 => n+ 1 chia hết cho 5
n = 10k4 + 9 =. n +1 chia hết cho 10
=> n +1 là bội số chung nhỏ nhất của 3,4,5,10
3 = 3
4 = 2.2 = 2^2
5 = 5
10 = 5.2
=> BSCNN(3,4,5,10) = 2^2.3.5 = 60
=> n = 60 -1 = 59
Tìm số bé nhất có 3 chữ số biết chia cho 3 dư 1 chia 4 dư 2 chia 5 dư 3 chia 6 dư 4. số cần tìm là ?
Giải cách lớp 6 nhé
Gọi số đó là a
a:3(dư 1)a:4(dư 2)a:5(dư 3)a:6(dư 4) và a nhỏ nhất có ba chữ số
=>(a+2)thuộc BC(3;4;5;6) và có 3 chữ số
4=2x2;6=2x3
Vậy BCNN(3;4;5;6)=2x3x5=30
Nên số cần tìm là: 30x4=120
Gọi số cần tìm là x : ( x > 0 )
x chia 3 dư 1 ; chia 4 dư 2 ; chia 5 dư 3 ; chia 6 dư 4
Suy ra x + 2 chia hết cho 3 ; 4 ; 5 ; 6
\(3=3\)
\(4=2^2\)
\(5=5\)
\(6=2\cdot3\)
BCNN ( 3 ; 4 ; 5 ; 6 ) = \(2^2\cdot3\cdot5\)= 60
\(BC\left(3;4;5;6\right)=B\left(60\right)=\left\{0;60;120;180;...\right\}\)
Xét trường hợp 0 :
x + 2 = 0
x = -2 ( loại )
Xét trường hợp 60 :
x + 2 = 60
x = 58 ( nhận )
Vậy số cần tìm là 58
chia cho 3 du 1 la so 7
chia cho 4 du 2 la so 10
chia cho 5 du 3 la so 8
chia 6 du 4 la 10