K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
$\widehat{EMH}=90^0-\widehat{MHE}=90^0-30^0=60^0$

$ME=MH\sin \widehat{MHE}=11.\sin 60^0=\frac{11\sqrt{3}}{2}$ (cm)

$EH=MH\cos \widehat{MHE}=11\cos 60^0=\frac{11}{2}$ (cm)

24 tháng 1 2022

a) Xét tam giác HMN và tam giác MNP:

Góc B chung.

Góc MHN = Góc NMP (cùng = 90o).

=> Tam giác HMN \(\sim\) Tam giác MNP (g - g).

b) Xét tam giác MNP vuông tại M, MH là đường cao:

=> MH= NH . PH (Hệ thức lượng trong tam giác vuông).

c) Xét tam giác NFH và tam giác MEH:

Góc FNH = Góc EMH (cùng phụ với góc MPN).

Góc NHF = Góc MHE (cùng phụ với góc MHF).

=> Tam giác NFH \(\sim\) Tam giác MEH (g - g).

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

\(\widehat{N}\) chung

Do đó: ΔHNM\(\sim\)ΔMNP

b: Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH^2=NH\cdot PH\)

19 tháng 3 2018

hình bạn tự vẽ nha

a)Xét tam giác DEM và tam gaics HEM có

góc EDM= góc EHM(= 90 độ)

Góc DEM= góc HEM(giả thiết)

Cạnh EM chung

=>tam giác DEM=tam giác HEM(c/h-g/n)(đpcm)

b)vì tam giác EDM = tam giác HEM(theo phần a)

=.ED=EH(2 cạnh tương ứng)

=>Tam giác EHD cân tại E

Mà góc DEH = 60 độ

theo định lý trong tam giác cân cso 1 góc bằng 60 độ thì tam giác đó là tam giác đều

Vạy tam giác EDH là tam giác đều

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
12 tháng 2 2018

A B C M 4cm H K

a)Ta có: tam giác ABC là tam giác cân

\(=>AB=AC\)

Mà \(AB=4cm\)

=>>AC=4cm

b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)

c) Xét tam giác ABM và tgiác ACM có

AB=AC(cmt)

AM: chung

==>>tgiác ABM=tgiác ACM( ch-cgv)

d) Ta có: tam giác ABM=tgiác ACM(cmt)

=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)

Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)

\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)

=> AMvuông góc vs BC

e) Xét tgiác BMH và tgiác CMK có :

BM=CM( 2 cạnh  tương ứng , cmt(a))

\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)

==>>>tgiác BMH=tgiác CMK(ch-gn)

=>MH=MK( 2 cạnh tương ứng)