Tìm x biết \(\sqrt{7+\sqrt{2x}}=3+\sqrt{5}\)
Giúp mình với ạ, mình đang cần gấp :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x\le\dfrac{5}{3}\\ PT\Leftrightarrow-3x+5=49\\ \Leftrightarrow x=-\dfrac{44}{3}\left(tm\right)\\ b,ĐK:x\ge-12\\ PT\Leftrightarrow\dfrac{1}{2}x+6=2\\ \Leftrightarrow\dfrac{1}{2}x=-4\\ \Leftrightarrow x=-8\left(tm\right)\\ c,ĐK:x\ge-\dfrac{1}{2}\\ PT\Leftrightarrow2x+1=13+4\sqrt{3}\\ \Leftrightarrow x=\dfrac{12+4\sqrt{3}}{2}=6+2\sqrt{3}\left(tm\right)\\ d,PT\Leftrightarrow\left|3x-1\right|=8\Leftrightarrow\left[{}\begin{matrix}3x-1=8\\1-3x=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{7}{3}\end{matrix}\right.\)
Tìm x biết: \(\sqrt{4-x^2}=\sqrt{x+2}\)
\(\sqrt{9x^2-4}=2\sqrt{3x-2}\)
Giúp mình với!Mình đang cần gấp
\(\sqrt{4-x^2}=\sqrt{x+2}\) (ĐK: \(-2\le x\le2\))
\(\Leftrightarrow4-x^2=x+2\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
_______
\(\sqrt{9x^2-4}=2\sqrt{3x-2}\) (ĐK: \(x\ge\dfrac{2}{3}\))
\(\Leftrightarrow9x^2-4=4\left(3x-2\right)\)
\(\Leftrightarrow9x^2-4=12x-8\)
\(\Leftrightarrow9x^2-12x+4=0\)
\(\Leftrightarrow\left(3x-2\right)^2=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\left(tm\right)\)
\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
\(ĐK:x\le-3;x\ge3\\ PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
ĐK \(x\ge-3\)
PT <=> \(x^3+5x^2+6x+2=4\sqrt{x+3}+2\sqrt{2x+7}\)
<=> \(2\left(x+3-2\sqrt{x+3}\right)+\left(x+5-2\sqrt{2x+7}\right)+x^3+5x^2+3x-9=0\)
+ Với x=-3 =>thỏa mãn
+Với \(x>-3\) ta liên hợp
\(2.\frac{x^2+2x-3}{x+3+2\sqrt{x+3}}+\frac{x^2+2x-3}{x+5+2\sqrt{2x+7}}+\left(x+3\right)\left(x^2+2x-3\right)=0\)
<=> \(\left(x^2+2x-3\right)\left(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3\right)=0\)
Do \(x>-3\)=> \(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3>0\)
=> \(x=1\)(TMĐKXĐ)
Vậy \(x=1;x=-3\)
Bài làm:
Ta có: \(\sqrt{7+\sqrt{2x}}=3+\sqrt{5}\)
\(\Leftrightarrow7+\sqrt{2x}=\left(3+\sqrt{5}\right)^2\)
\(\Leftrightarrow7+\sqrt{2x}=14+6\sqrt{5}\)
\(\Leftrightarrow\sqrt{2x}=7+6\sqrt{5}\)
\(\Leftrightarrow2x=\left(7+6\sqrt{5}\right)^2\)
\(\Leftrightarrow2x=229+84\sqrt{5}\)
\(\Rightarrow x=\frac{229+84\sqrt{5}}{2}\)