K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\\x\ne\frac{9}{4}\end{matrix}\right.\)

Ta có: \(Q=\frac{\sqrt{x}+2}{-\sqrt{x}+2}+\frac{3\sqrt{x}-4}{2\sqrt{x}-3}+\frac{-7\sqrt{x}+10}{-2x+7\sqrt{x}-6}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(2\sqrt{x}-3\right)}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}+\frac{\left(3\sqrt{x}-4\right)\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}+\frac{-7\sqrt{x}+10}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)

\(=\frac{2x+\sqrt{x}-6-3x+10\sqrt{x}-8-7\sqrt{x}+10}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)

\(=\frac{-x+4\sqrt{x}-4}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)

\(=\frac{-\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2\sqrt{x}-3\right)}\)

\(=\frac{\sqrt{x}-2}{2\sqrt{x}-3}\)

b) Để Q<-4 thì Q+4<0

\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}-3}+\frac{4\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)

\(\Leftrightarrow\frac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)

Trường hợp 1: \(\left\{{}\begin{matrix}9\sqrt{x}-14>0\\2\sqrt{x}-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}>14\\2\sqrt{x}< 3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>\frac{14}{9}\\\sqrt{x}< \frac{3}{2}\end{matrix}\right.\)

⇔Loại vì \(\frac{14}{9}>\frac{3}{2}\)

Trường hợp 2: \(\left\{{}\begin{matrix}9\sqrt{x}-14< 0\\2\sqrt{x}-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}< 14\\2\sqrt{x}>3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< \frac{14}{9}\\\sqrt{x}>\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< \frac{196}{81}\\x>\frac{9}{4}\end{matrix}\right.\Leftrightarrow\frac{9}{4}< x< \frac{196}{81}\)

Kết hợp ĐKXĐ, ta được:

\(\frac{9}{4}< x< \frac{196}{81}\)

Vậy: Để Q<-4 thì \(\frac{9}{4}< x< \frac{196}{81}\)

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)

NM
22 tháng 8 2021

ta có :

\(P=\frac{\sqrt{x}+4}{1-7\sqrt{x}}+\frac{\sqrt{x}-2}{\sqrt{x}+1}+\frac{24\sqrt{x}}{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)}\)

\(\frac{-\left(\sqrt{x}+4\right)\left(\sqrt{x}+1\right)+\left(\sqrt{x}-2\right)\left(7\sqrt{x}-1\right)+24\sqrt{x}}{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)}=\frac{6x+4\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)}\)

\(=\frac{6\sqrt{x}+2}{7\sqrt{x}-1}\)

Để \(P\ge-6\Leftrightarrow\frac{6\sqrt{x}+2}{7\sqrt{x}-1}\ge-6\Leftrightarrow\frac{48\sqrt{x}-4}{7\sqrt{x}-1}\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}0\le\sqrt{x}\le\frac{1}{12}\\\sqrt{x}>\frac{1}{7}\end{cases}}\Leftrightarrow\orbr{\begin{cases}0\le x\le\frac{1}{144}\\x>\frac{1}{49}\end{cases}}\)

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0