K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 9 2020

Câu đầu tìm m để ĐTHS làm sao bạn?

2.

\(x=1\) là TCĐ của ĐTHS \(\frac{mx^2-3x}{x-1}=0\) khi và chỉ khi \(mx^2-3x=0\) không có nghiệm \(x=1\)

\(\Leftrightarrow m.1^2-3.1\ne0\Leftrightarrow m\ne3\)

23 tháng 10 2017

Ta có:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn A.

a: Để hàm số đồng biến thì 2m-1>0

hay \(m>\dfrac{1}{2}\)

b: Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m^2-1=3\\2m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne2\end{matrix}\right.\)

hay m=-2

16 tháng 12 2023

a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0

=>2m<-3

=>\(m< -\dfrac{3}{2}\)

b: Để (d)//(d1) thì

\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)

=>m=5

c: Thay y=5 vào y=3x-1, ta được:

3x-1=5

=>3x=6

=>x=6/3=2

Thay x=2 và y=5 vào (d), ta được:

\(2\left(2m+3\right)-2m+5=5\)

=>\(4m+6-2m+5=5\)

=>2m+11=5

=>2m=-6

=>m=-6/2=-3

d: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)

=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)

\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)

=>\(B\left(-2m+5;0\right)\)

\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)

\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)

Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)

=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)

=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)

=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)

=>\(4m^2-20m+25-4m-6=0\)

=>\(4m^2-24m+19=0\)

=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

19 tháng 11 2023

a) Khi m =2 thì y = 3x - 1 

(Bạn tự vẽ tiếp)

b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)

c)

Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)

Giao điểm của 2 đường thẳng thuộc trục tung => x=0

Khi đó, ta có: \(y=-3.0+2=2\)

⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)

⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)