K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2020

\(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\)

1 tháng 10 2016

 (x + 1) + (x + 2) + (x + 3 )+ ... + (x + 20) = 250 ( có 20 nhóm )
=> ( x + x + x +...+ x ) + ( 1 + 2 + 3 +...+ 20) = 250 ( có 20 x và 20 số hạng )
=> x . 20 + 20 . 21 : 2 = 250
=> x . 20 + 210 = 250
=> x . 20 = 250 - 210
=> x . 20 = 40
=> x = 40 : 20
     x = 2

1 tháng 10 2016

(x+1)+(x+2)+(x+3)+...+(x+20)=250

Dãy trên có 20 số hạng

20x+(1+2+3+...+20)=250

Tổng dãy 1+2+3+...+20 là

(20+1).20:2=210

20x+210=250

20x=250-210

20x=40

x=40:20

x=2

1 tháng 3 2017

bình phương rồi cauchy-schwarz

1 tháng 3 2017

-6.258342613

26 tháng 7 2017


nếu p=5 thì các số kia là snt
nếu p=5k+1 thì p+14=5k+15  ko là số nt
nếu p=5k+2 thì....                 ko là số nt
nếu p=5k+3 thì....                 ko là số nt
nếu p=5k+4 thì....                 ko là số nt
vậy p=5 thỏa mãn y/c đề bài

3 tháng 9 2020

cám ơn bạn

7 tháng 11 2016

\(2^{x-2}\cdot3^{y-3}\cdot5^{z-1}=144\)

\(\Rightarrow2^{x-2}\cdot3^{y-3}\cdot5^{z-1}=2^4\cdot3^2\cdot5^0\)

\(\Rightarrow\begin{cases}2^{x-2}=2^4\\3^{y-3}=3^2\\5^{z-1}=5^0\end{cases}\)

\(\Rightarrow\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}\)

\(\Rightarrow\begin{cases}x=6\\y=5\\z=1\end{cases}\)

15 tháng 3 2017

tại sao lại thế được

2^x-2=2^4 được ?

26 tháng 3 2020

dể thôi mà

26 tháng 3 2020

Chị xem hướng dẫn giải và đáp án bên dưới nha cj,em mới học lớp 6 à !

Hướng dẫn giải và đáp án : 

- Trước hết ta chứng minh : Nếu a \(\inℕ,\sqrt{a}\inℚ\)thì \(\sqrt{a}\inℕ\).Thật vậy

vì \(\sqrt{a}\inℚ\)nên \(\sqrt{a}=\frac{m}{n}\left(m,n\inℕ,n\ne0,\left(m,n\right)=1\right)\).Ta có : 

\(a=\frac{m^2}{n^2}\Leftrightarrow a.n^2=m^2\Rightarrow m^2⋮n^2\Rightarrow n=1\Rightarrow a=m\inℕ\)( vì (m,n) = 1 ) 

-Vận dụng kết quả trên ta lần lượt chứng minh : \(\sqrt{xy}\inℕ,\sqrt{x}\inℕ,\sqrt{y}\inℕ\)

Chứng minh : 

(1) \(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-2016\Leftrightarrow x+y+2\sqrt{xy}=2016^2-2.2016\sqrt{xy}+xy\)

\(\Leftrightarrow\sqrt{xy}=\frac{2016^2+xy-x-y}{4034}\inℚ\).Đặt k = \(\sqrt{xy}\),thay vào (1) ta được : 

\(\sqrt{x}=k-2016-\sqrt{y}\Leftrightarrow x=\left(k-2016^2\right)-2.\left(k-2016\right)\sqrt{y}+y\)

\(\Leftrightarrow\sqrt{y}=\frac{\left(k-2016\right)^2+y-x}{2.\left(k-2016\right)}\inℚ\).Ta có : 

\(\sqrt{x}+\sqrt{y}+2016=\sqrt{xy}\Leftrightarrow\left(\sqrt{x}-1\right).\left(\sqrt{y}-1\right)=2017.\)Vì \(\sqrt{x}-1\inℤ,\sqrt{y}-1\inℤ\)nên \(\sqrt{x}-1,\sqrt{y}-1\)là các ước của 2017

Vì 2017 là số nguyên tố nên ta có các trường hợp : 

1)\(\hept{\begin{cases}\sqrt{x}-1=1\\\sqrt{y}-1=2017\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=2018^2\end{cases}}}\)

2) \(\hept{\begin{cases}\sqrt{x}-1=2017\\\sqrt{y}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2018^2\\y=4\end{cases}}}\)

Vậy các cặp số nguyên (x,y ) thỏa mãn là :(20182 , 4) ; ( 4,20182).