K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

a) \(1,25^2-0,5^2+3,25^3\)

\(=\left(\frac{5}{4}\right)^2-\left(\frac{1}{2}\right)^2+\left(\frac{13}{4}\right)^3\)

\(=\frac{25}{16}-\frac{1}{4}+\frac{2197}{64}\)

\(=\frac{2281}{64}\)

b) \(1,2+2,4^2-\left(3\frac{1}{2}\right)^2\)

\(=\frac{6}{5}+\left(\frac{12}{5}\right)^2-\left(\frac{7}{2}\right)^2\)

\(=\frac{6}{5}+\frac{144}{25}-\frac{49}{4}\)

\(=\frac{-529}{100}\)

16 tháng 9 2019

ta nhận thấy 2^1+2^2+2^3+2^4 chia hết cho 7.Vậy cứ 4 số liên tiếp cũng chia hết cho 7.

=>Số số hạng của mũ là:

100-1:1=100

mà 100 chia hết cho 4 

=>[2^1+2^2+...2^98+2^99+2^100]:7 có số dư là 0

16 tháng 12 2021
Hello. ..........
26 tháng 9 2017

a) 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... +2 mũ 10

Gọi biểu thức trên là A , ta có :

A = 2^1+2^2 9+2^3+ 2^4 +...+2^10

2A=     2^2 +2^3+2^4+...+2^10+2^11

2A-A=2^11-2^1

A=2^10

b) Làm tương tự như tớ từ dòng thứ 3 mà tớ viết

5A = 5^2+5^3+...+5^25 5^26

5A-A=5^26 - 5^1

A=5^25

30 tháng 9 2017

xin lỗi vì lúc đó mình cũng đang học bài nên hơi mất tập trung và quên chia 4 đến lúc đọc lại câu trả lời mới thấy sót

8 tháng 11 2023

\(B=2^2+2^3+2^4+...+2^{121}\\=(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+...+(2^{120}+2^{121})\\=2^2\cdot(1+2)+2^4\cdot(1+2)+2^6\cdot(1+2)+...+2^{120}\cdot(1+2)\\=2^2\cdot3+2^4\cdot3+2^6\cdot3+...+2^{120}\cdot3\\=3\cdot(2^2+2^4+2^6+...+2^{120})\)

Vì \(3\cdot(2^2+2^4+2^6+...+2^{120})\vdots3\)

nên \(B\vdots3\)

11 tháng 1 2021

Ta có : A = 30 + 31 + 32 + 33 + .... + 350

=> 3A = 31 + 32 + 33 + 34 + ... + 351

Khi đó 3A - A = (31 + 32 + 33 + 34 + ... + 351) - (30 + 31 + 32 + 33 + .... + 350)

=> 2A = 351 - 30 

=> A = \(\frac{3^{51}-1}{2}\)

Khi đó A = \(\frac{3^{51}-1}{2}=\frac{3^3.3^{48}-1}{2}=\frac{27.\left(3^4\right)^{12}-1}{2}=\frac{27.\left(...1\right)^{12}-1}{2}\)

\(=\frac{\left(...7\right)-1}{2}=\frac{\left(...6\right)}{2}=\left(...3\right)\)

Vậy A tận cùng là 3

12 tháng 1 2021

CẢM ƠN BẠN RẤT NHIỀU TvT

Bài 8:

a: \(\left(\dfrac{2}{5}+\dfrac{3}{4}\right)^2=\left(\dfrac{8+15}{20}\right)^2=\left(\dfrac{23}{20}\right)^2=\dfrac{529}{400}\)

b: \(\left(\dfrac{5}{4}-\dfrac{1}{6}\right)^2=\left(\dfrac{15}{12}-\dfrac{2}{12}\right)^2=\left(\dfrac{13}{12}\right)^2=\dfrac{169}{144}\)

4 tháng 9 2020

1/   \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2.3xy+\left(3y\right)^2\)

\(=\left(2x-3y\right)^2\)

2/   \(x^3-y^6=x^3-\left(y^2\right)^3\)

\(=\left(x-y^2\right)\left(x^2+xy^2+y^4\right)\)

Làm tạm 2 phần đợi mik xíu

4 tháng 9 2020

4x2 - 12xy + 9y2 = ( 2x )2 - 2.2x.3y + ( 3y )2 = ( 2x - 3y )2

x3 - y6 = x3  - ( y)3 = ( x - y2 )( x2 + xy2 + y4 )

x6 - 6x4 + 12x2 - 8 = ( x2 )3 - 3.(x2)2.2 + 3.x2.22 - 23 = ( x2 - 2 )3

( x2 + 4y2 - 5 )2 - 16( x2y2 + 2xy + 1 ) = ( x2 + 4y2 - 5 )2 - 42( xy + 1 )2

                                                            = ( x2 + 4y2 - 5 )2 - ( 4xy + 4 )2

                                                            = [ ( x2 + 4y2 - 5 ) - ( 4xy + 4 ) ][ ( x2 + 4y2 - 5 ) + ( 4xy + 4 ) ]

                                                            = ( x2 + 4y2 - 5 - 4xy - 4 )( x2 + 4y2 - 5 + 4xy + 4 )

                                                            = [ ( x2 - 4xy + 4y2 ) - 9 ][ ( x2 + 4xy + 4y2 ) - 1 ]

                                                            = [ ( x - 2y )2 - 32 ][ ( x + 2y )2 - 12 ]

                                                            = ( x - 2y - 3 )( x - 2y + 3 )( x + 2y - 1 )( x + 2y + 1 )

( a + b )3 - ( a3 + b3 ) = a3 + 3a2b + 3ab2 + b3 - a3 - b3

                                  = 3a2b + 3ab2

                                  = 3ab( a + b )