Cho tam giác ABC có diện tích 36 cm2 . Trên BC lấy điểm M sao cho BM = 3 CM. Trên AC lấy điểm N sao cho AN = 2 NC, kéo dài MN cắt BA tại H.
a, Tính diện tích tam giác CMN
b, So sánh HN với NM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối AC, BN
S(CMN) = 1/3 S(BMN)
=> S(PCN) = 1/3S(BPN)
Mà S(APN) = 1/3 S(PCN)
=> S(APN) = 1/3 x 1/3 = 1/9S(BPN)
Hay S(APN) = 1/8 S(ABN)
Mà S(ABN) = 1/4 S(ABC)
=> S(APN) = 1/8 x 1/4 = 1/32 S(ABC)
S(ABC) = 4 : 1/32 = 128 cm2
Nối AC, BN S(CMN) = 1/3 S(BMN) => S(PCN) = 1/3S(BPN) Mà S(APN) = 1/3 S(PCN) => S(APN) = 1/3 x 1/3 = 1/9S(BPN) Hay S(APN) = 1/8 S(ABN) Mà S(ABN) = 1/4 S(ABC) => S(APN) = 1/8 x 1/4 = 1/32 S(ABC) S(ABC) = 4 : 1/32 = 128 c m 2
a/
Ta có
\(NC=2AN\Rightarrow\dfrac{AN}{AC}=\dfrac{1}{3}\)
Hai tg ABN và tg ABC có chung đường cao từ B->AC nên
\(\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{AN}{AC}=\dfrac{1}{3}\Rightarrow S_{ABN}=\dfrac{1}{3}xS_{ABC}\)
Hai tg DBN và tg DCN có chung đường cao từ D->BC và BM=CM nên
đường cao từ B->DM = đường cao từ C->DM
Hai tg DNA và tg DNC có chung đường cao từ D->AC nên
\(\dfrac{S_{DNA}}{S_{DNC}}=\dfrac{AN}{CN}=\dfrac{1}{2}\)
Hai tg này lại có chung DN nên
\(\dfrac{S_{DNA}}{S_{DNC}}=\) đường cao từ A->DM / đường cao từ C->DM \(=\dfrac{1}{2}\)
=> đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)
Hai tg DNA và tg DBN có chung DN nên
\(\dfrac{S_{DNA}}{S_{DBN}}=\) đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)
\(\Rightarrow S_{DBN}=2xS_{DNA}\)
\(\Rightarrow S_{DNA}=S_{DBN}-S_{ABN}=2xS_{DNA}-S_{DBN}\Rightarrow S_{DNA}=S_{ABN}=\dfrac{1}{3}xS_{ABC}=\dfrac{10}{3}cm^2\)
b/
Hai tg DNB và tg DNC có chung DN và đường cao từ B->DM = đường cao từ C->DM nên
\(S_{DNB}=S_{DNC}\)
c/ Hai tg DNA và tg ABN có chung đường cao từ N->DB nên
\(\dfrac{S_{DNA}}{S_{ABN}}=\dfrac{AD}{AB}=1\)