Cho a,b>o và a+b=1
Tìm GTNN của Q= ( a+1/b )2 + ( b+1/a)2
Giải theo cách lớp 8 nha mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a sai đề nên mik sửa lại nha
a) \(A=2019-\left(3x+8\right)^2\)
Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)
Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)
Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)
b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)
Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)
Vậy ...
b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)
Vậy ...
\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)
Dấu "=" xảy ra khi \(2x+1=15=>x=7\)
Vậy ...
\(a,A=2019-\left(3x+8\right)\)
GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)
\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)
GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)
\(a,A=\left(6x-1\right)^2+2018\ge2018\)
Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)
Vậy GTNN của A là 2018 khi x = 1/6
B ko hiểu
Ta sẽ chứng minh bất đẳng thức phụ (*) sau : \(\frac{x^2}{1}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{2}\)
\(< =>\left(x^2+y^2\right)2\ge\left(x+y\right)^2< =>2x^2+2y^2\ge x^2+y^2+2xy\)
\(< =>2x^2+2y^2-x^2-y^2-2xy\ge0< =>x^2-2xy+y^2\ge0< =>\left(x-y\right)^2\ge0\)*đúng*
Sử dụng bất đẳng thức (*) ta có : \(Q=\frac{\left(a+\frac{1}{b}\right)^2}{1}+\frac{\left(b+\frac{1}{a}\right)^2}{1}\ge\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{2}=\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\)
Tiếp tục ta sẽ chứng minh bất đẳng thức phụ (**) sau : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(< =>\left(a+b\right)^2\ge4ab< =>a^2+b^2+2ab-4ab\ge0< =>\left(a-b\right)^2\ge0\)*đúng*
Áp dụng bất đẳng thức (**) ta được : \(\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}=\frac{\left[1+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}\)
\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Khi đó \(Q\ge\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)
Vậy ta có điều phải chứng minh
Cách 1:
Áp dụng bất đẳng thức Bu-nhi-a ta có:
(a^2+b^2+c^2)(1+1+1)>=(a+b+c)^2
<=> 3(a^2+b^2+c^2)>=1
<=> a^2+b^2+c^2>=1/3
=> đẳng thức được chúng minh
Cách 2:
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 1/3
dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3
P/s: 2 cách làm theo cách nào cx đc
Ko chắc âu nhé mới lớp 6 thôi
Có: \(a^2+b^2\ge2ab\Rightarrow a^2+b^2\ge2\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+b^2\right)\ge2\left(a+b+1\right)\)
\(\Rightarrow Q\ge2\left(a+b\right)+\frac{8}{a+b}+2\)
Mà: \(2\left(a+b\right)+\frac{8}{a+b}\ge2\sqrt{2\left(a+b\right).\frac{8}{a+b}}=8\)
\(\Rightarrow Q\ge10\)
Dấu "=" xảy ra <=> a=b=1
Bài 1:
$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$
Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$
$\Leftrightarrow a=b=c$
Mà $a+b+c=3$ nên $a=b=c=1$
$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$
Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ
Áp dụng BĐT Cauchy - Schwars ta có:
\(Q\ge\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{2}\).
Áp dụng BĐT Schwars ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\).
Do đó: \(a+\frac{1}{b}+b+\frac{1}{a}=\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\ge5\Rightarrow Q\ge\frac{25}{2}\).
Vậy Min Q = \(\frac{25}{2}\Leftrightarrow a=b=\frac{1}{2}\).